bifurcation diagrams
Recently Published Documents


TOTAL DOCUMENTS

581
(FIVE YEARS 141)

H-INDEX

29
(FIVE YEARS 5)

2022 ◽  
Vol 155 ◽  
pp. 111707
Author(s):  
Diogo Ricardo da Costa ◽  
André Fujita ◽  
Antonio Marcos Batista ◽  
Matheus Rolim Sales ◽  
José Danilo Szezech Jr

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 77
Author(s):  
Sorin Lugojan ◽  
Loredana Ciurdariu ◽  
Eugenia Grecu

A new transformation of parameters for generic discrete-time dynamical systems with two independent parameters is defined, for when the degeneracy occurs. Here the classical transformation of parameters (α1,α2)→(β1,β2) is not longer regular at (0,0); therefore, implicit function theorem (IFT) cannot be applied around the origin, and a new transformation is necessary. The approach in this article to a case of Chenciner bifurcation is theoretical, but it can provide an answer for a number of applications of dynamical systems. We studied the bifurcation scenario and found out that, by this transformation, four different bifurcation diagrams are obtained, and the non-degenerate Chenciner bifurcation can be described by two bifurcation diagrams.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

In this study, we consider a switching strategy that yields a stable desirable dynamic behaviour when it is applied alternatively between two undesirable dynamical systems. From the last few years, dynamical systems employed “chaos1 + chaos2 = order” and “order1 + order2 = chaos” (vice-versa) to control and anti control of chaotic situations. To find parameter values for these kind of alternating situations, comparison is being made between bifurcation diagrams of a map and its alternate version, which, on their own, means independent of one another, yield chaotic orbits. However, the parameter values yield a stable periodic orbit, when alternating strategy is employed upon them. It is interesting to note that we look for stabilization of chaotic trajectories in nonlinear dynamics, with the assumption that such chaotic behaviour is not desirable for a particular situation. The method described in this paper is based on the Parrondo’s paradox, where two losing games can be alternated, yielding a winning game, in a superior orbit.


2022 ◽  
Vol 30 (1) ◽  
pp. 382-403
Author(s):  
Gheorghe Moza ◽  
◽  
Mihaela Sterpu ◽  
Carmen Rocşoreanu ◽  
◽  
...  

<abstract><p>The generic double-Hopf bifurcation is presented in detail in literature in textbooks like references. In this paper we complete the study of the double-Hopf bifurcation with two degenerate (or nongeneric) cases. In each case one of the generic conditions is not satisfied. The normal form and the corresponding bifurcation diagrams in each case are obtained. New possibilities of behavior which do not appear in the generic case were found.</p></abstract>


2022 ◽  
Vol 19 (3) ◽  
pp. 2489-2505
Author(s):  
Amit Kumar ◽  
◽  
Jehad Alzabut ◽  
Sudesh Kumari ◽  
Mamta Rani ◽  
...  

<abstract><p>In this paper, a novel one dimensional chaotic map $ K(x) = \frac{\mu x(1\, -x)}{1+ x} $, $ x\in [0, 1], \mu &gt; 0 $ is proposed. Some dynamical properties including fixed points, attracting points, repelling points, stability and chaotic behavior of this map are analyzed. To prove the main result, various dynamical techniques like cobweb representation, bifurcation diagrams, maximal Lyapunov exponent, and time series analysis are adopted. Further, the entropy and probability distribution of this newly introduced map are computed which are compared with traditional one-dimensional chaotic logistic map. Moreover, with the help of bifurcation diagrams, we prove that the range of stability and chaos of this map is larger than that of existing one dimensional logistic map. Therefore, this map might be used to achieve better results in all the fields where logistic map has been used so far.</p></abstract>


2022 ◽  
Vol 4 (1) ◽  
pp. 50-63
Author(s):  
P. K. Santra ◽  
Hasan S. Panigoro ◽  
G. S. Mahapatra

In this paper, a discrete-time predator-prey model involving prey refuge proportional to predator density is studied. It is assumed that the rate at which prey moves to the refuge is proportional to the predator density. The fixed points, their local stability, and the existence of Neimark-Sacker bifurcation are investigated. At last, the numerical simulations consisting of bifurcation diagrams, phase portraits, and time-series are given to support analytical findings. The occurrence of chaotic solutions are also presented by showing the Lyapunov exponent while some parameters are varied.


2021 ◽  
Author(s):  
Pok Him Siu ◽  
Eli J Muller ◽  
Valerio Zerbi ◽  
Kevin Aquino ◽  
Ben D. Fulcher

New brain atlases with high spatial resolution and whole-brain coverage have rapidly advanced our knowledge of the brain's neural architecture, including the systematic variation of excitatory and inhibitory cell densities across the mammalian cortex. But understanding how the brain's microscale physiology shapes brain dynamics at the macroscale has remained a challenge. While physiologically based mathematical models of brain dynamics are well placed to bridge this explanatory gap, their complexity can form a barrier to providing clear mechanistic interpretation of the dynamics they generate. In this work we develop a neural-mass model of the mouse cortex and show how bifurcation diagrams, which capture local dynamical responses to inputs and their variation across brain regions, can be used to understand the resulting whole-brain dynamics. We show that strong fits to resting-state functional magnetic resonance imaging (fMRI) data can be found in surprisingly simple dynamical regimes (including where all brain regions are confined to a stable fixed point) where regions are able to respond strongly to variations in their inputs, consistent with direct structural connections providing a strong constraint on functional connectivity in the anesthetized mouse. We also use bifurcation diagrams to show how perturbations to local excitatory and inhibitory coupling strengths across the cortex, constrained by cell-density data, provide spatially dependent constraints on resulting cortical activity, and support a greater diversity of coincident dynamical regimes. Our work illustrates methods for visualizing and interpreting model performance in terms of underlying dynamical mechanisms, an approach that is crucial for building explanatory and physiologically grounded models of the dynamical principles that underpin large-scale brain activity.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3324
Author(s):  
Xinxin Qie ◽  
Quanbao Ji

This study investigated the stability and bifurcation of a nonlinear system model developed by Marhl et al. based on the total Ca2+ concentration among three different Ca2+ stores. In this study, qualitative theories of center manifold and bifurcation were used to analyze the stability of equilibria. The bifurcation parameter drove the system to undergo two supercritical bifurcations. It was hypothesized that the appearance and disappearance of Ca2+ oscillations are driven by them. At the same time, saddle-node bifurcation and torus bifurcation were also found in the process of exploring bifurcation. Finally, numerical simulation was carried out to determine the validity of the proposed approach by drawing bifurcation diagrams, time series, phase portraits, etc.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3315
Author(s):  
Othman Abdullah Almatroud ◽  
Victor Kamdoum Tamba ◽  
Giuseppe Grassi ◽  
Viet-Thanh Pham

Oscillations and oscillators appear in various fields and find applications in numerous areas. We present an oscillator with infinite equilibria in this work. The oscillator includes only nonlinear elements (quadratic, absolute, and cubic ones). It is different from common oscillators, in which there are linear elements. Special features of the oscillator are suitable for secure applications. The oscillator’s dynamics have been discovered via simulations and an electronic circuit. Chaotic attractors, bifurcation diagrams, Lyapunov exponents, and the boosting feature are presented while measurements of the implemented oscillator are reported by using an oscilloscope. We introduce a random number generator using such an oscillator, which is applied in biomedical image encryption. Moreover, the security and performance analysis are considered to confirm the correctness of encryption and decryption processes.


Sign in / Sign up

Export Citation Format

Share Document