Rule based anonymisation against inference attack in social networks

Author(s):  
Nidhi Desai ◽  
Manik Lal Das
2022 ◽  
Vol 24 (3) ◽  
pp. 0-0

In this digital era, people are very keen to share their feedback about any product, services, or current issues on social networks and other platforms. A fine analysis of these feedbacks can give a clear picture of what people think about a particular topic. This work proposed an almost unsupervised Aspect Based Sentiment Analysis approach for textual reviews. Latent Dirichlet Allocation, along with linguistic rules, is used for aspect extraction. Aspects are ranked based on their probability distribution values and then clustered into predefined categories using frequent terms with domain knowledge. SentiWordNet lexicon uses for sentiment scoring and classification. The experiment with two popular datasets shows the superiority of our strategy as compared to existing methods. It shows the 85% average accuracy when tested on manually labeled data.


Author(s):  
Rui Zhang ◽  
Yueqi Zhou ◽  
Lin Li ◽  
Chengming Zou
Keyword(s):  

2019 ◽  
Vol 6 (3) ◽  
pp. 523-537 ◽  
Author(s):  
Binghui Wang ◽  
Jinyuan Jia ◽  
Le Zhang ◽  
Neil Zhenqiang Gong

2022 ◽  
Vol 24 (3) ◽  
pp. 1-19
Author(s):  
Nikhlesh Pathik ◽  
Pragya Shukla

In this digital era, people are very keen to share their feedback about any product, services, or current issues on social networks and other platforms. A fine analysis of these feedbacks can give a clear picture of what people think about a particular topic. This work proposed an almost unsupervised Aspect Based Sentiment Analysis approach for textual reviews. Latent Dirichlet Allocation, along with linguistic rules, is used for aspect extraction. Aspects are ranked based on their probability distribution values and then clustered into predefined categories using frequent terms with domain knowledge. SentiWordNet lexicon uses for sentiment scoring and classification. The experiment with two popular datasets shows the superiority of our strategy as compared to existing methods. It shows the 85% average accuracy when tested on manually labeled data.


Sign in / Sign up

Export Citation Format

Share Document