average accuracy
Recently Published Documents


TOTAL DOCUMENTS

1112
(FIVE YEARS 805)

H-INDEX

25
(FIVE YEARS 8)

2022 ◽  
Vol 15 (1) ◽  
pp. 1-27
Author(s):  
Yun Zhou ◽  
Pongstorn Maidee ◽  
Chris Lavin ◽  
Alireza Kaviani ◽  
Dirk Stroobandt

One of the key obstacles to pervasive deployment of FPGA accelerators in data centers is their cumbersome programming model. Open source tooling is suggested as a way to develop alternative EDA tools to remedy this issue. Open source FPGA CAD tools have traditionally targeted academic hypothetical architectures, making them impractical for commercial devices. Recently, there have been efforts to develop open source back-end tools targeting commercial devices. These tools claim to follow an alternate data-driven approach that allows them to be more adaptable to the domain requirements such as faster compile time. In this paper, we present RWRoute, the first open source timing-driven router for UltraScale+ devices. RWRoute is built on the RapidWright framework and includes the essential and pragmatic features found in commercial FPGA routers that are often missing from open source tools. Another valuable contribution of this work is an open-source lightweight timing model with high fidelity timing approximations. By leveraging a combination of architectural knowledge, repeating patterns, and extensive analysis of Vivado timing reports, we obtain a slightly pessimistic, lumped delay model within 2% average accuracy of Vivado for UltraScale+ devices. Compared to Vivado, RWRoute results in a 4.9× compile time improvement at the expense of 10% Quality of Results (QoR) loss for 665 synthetic and six real designs. A main benefit of our router is enabling fast partial routing at the back-end of a domain-specific flow. Our initial results indicate that more than 9× compile time improvement is achievable for partial routing. The results of this paper show how such a router can be beneficial for a low touch flow to reduce dependency on commercial tools.


2022 ◽  
Vol 24 (3) ◽  
pp. 1-19
Author(s):  
Nikhlesh Pathik ◽  
Pragya Shukla

In this digital era, people are very keen to share their feedback about any product, services, or current issues on social networks and other platforms. A fine analysis of these feedbacks can give a clear picture of what people think about a particular topic. This work proposed an almost unsupervised Aspect Based Sentiment Analysis approach for textual reviews. Latent Dirichlet Allocation, along with linguistic rules, is used for aspect extraction. Aspects are ranked based on their probability distribution values and then clustered into predefined categories using frequent terms with domain knowledge. SentiWordNet lexicon uses for sentiment scoring and classification. The experiment with two popular datasets shows the superiority of our strategy as compared to existing methods. It shows the 85% average accuracy when tested on manually labeled data.


2022 ◽  
Vol 24 (3) ◽  
pp. 0-0

In this digital era, people are very keen to share their feedback about any product, services, or current issues on social networks and other platforms. A fine analysis of these feedbacks can give a clear picture of what people think about a particular topic. This work proposed an almost unsupervised Aspect Based Sentiment Analysis approach for textual reviews. Latent Dirichlet Allocation, along with linguistic rules, is used for aspect extraction. Aspects are ranked based on their probability distribution values and then clustered into predefined categories using frequent terms with domain knowledge. SentiWordNet lexicon uses for sentiment scoring and classification. The experiment with two popular datasets shows the superiority of our strategy as compared to existing methods. It shows the 85% average accuracy when tested on manually labeled data.


Author(s):  
N. Shobha Rani ◽  
Manohar N. ◽  
Hariprasad M. ◽  
Pushpa B. R.

<p>Automated reading of handwritten Kannada documents is highly challenging due to the presence of vowels, consonants and its modifiers. The variable nature of handwriting styles aggravates the complexity of machine based reading of handwritten vowels and consonants. In this paper, our investigation is inclined towards design of a deep convolution network with capsule and routing layers to efficiently recognize  Kannada handwritten characters.  Capsule network architecture is built of an input layer,  two convolution layers, primary capsule, routing capsule layers followed by tri-level dense convolution layer and an output layer.  For experimentation, datasets are collected from more than 100 users for creation of training data samples of about 7769 comprising of 49 classes. Test samples of all the 49 classes are again collected separately from 3 to 5 users creating a total of 245 samples for novel patterns. It is inferred from performance evaluation; a loss of 0.66% is obtained in the classification process and for 43 classes precision of 100% is achieved with an accuracy of 99%. An average accuracy of 95% is achieved for all remaining 6 classes with an average precision of 89%.</p>


Author(s):  
Thi Thu Nguyen ◽  
Phuc Thinh Doan ◽  
Anh-Ngoc Le ◽  
Kolla Bhanu Prakash ◽  
Subrata Chowdhury ◽  
...  

<span>In this paper, we introduce a mobile application called CarSafe, in which data from the acceleration sensor integrated on smartphones is exploited to come up with an efficient classification algorithm. Two statuses, "Driving" or "Not driving," are monitored in the real-time manner. It enables automatic actions to help the driver safer. Also, from these data, our software can detect the crash situation. The software will then automatically send messages with the user's location to their emergency departments for timely assistance. The application will also issue the same alert if it detects a driver of a vehicle driving too long. The algorithm's quality is assessed through an average accuracy of 96.5%, which is better than the previous work (i.e., 93%).</span>


10.29007/h46n ◽  
2022 ◽  
Author(s):  
Hoang Nhut Huynh ◽  
Minh Thanh Do ◽  
Gia Thinh Huynh ◽  
Anh Tu Tran ◽  
Trung Nghia Tran

Diabetic retinopathy (DR) is a complication of diabetes mellitus that causes retinal damage that can lead to vision loss if not detected and treated promptly. The common diagnosis stages of the disease take time, effort, and cost and can be misdiagnosed. In the recent period with the explosion of artificial intelligence, deep learning has become the most popular tool with high performance in many fields, especially in the analysis and classification of medical images. The Convolutional Neural Network (CNN) is more widely used as a deep learning method in medical imaging analysis with highly effective. In this paper, the five-stage image of modern DR (healthy, mild, moderate, severe, and proliferative) can be detected and classified using the deep learning technique. After cross-validation training and testing on the corresponding 5,590-image dataset, a pre-MobileNetV2 training model is proposed in classifying stages of diabetic retinopathy. The average accuracy of the model achieved was 93.89% with the precision of 94.00%, recall 92.00% and f1-score 90.00%. The corresponding thermal image is also given to help experts for evaluating the influence of the retina in each different stage.


2022 ◽  
Vol 14 (2) ◽  
pp. 382
Author(s):  
Yafei Jing ◽  
Yuhuan Ren ◽  
Yalan Liu ◽  
Dacheng Wang ◽  
Linjun Yu

Efficiently and automatically acquiring information on earthquake damage through remote sensing has posed great challenges because the classical methods of detecting houses damaged by destructive earthquakes are often both time consuming and low in accuracy. A series of deep-learning-based techniques have been developed and recent studies have demonstrated their high intelligence for automatic target extraction for natural and remote sensing images. For the detection of small artificial targets, current studies show that You Only Look Once (YOLO) has a good performance in aerial and Unmanned Aerial Vehicle (UAV) images. However, less work has been conducted on the extraction of damaged houses. In this study, we propose a YOLOv5s-ViT-BiFPN-based neural network for the detection of rural houses. Specifically, to enhance the feature information of damaged houses from the global information of the feature map, we introduce the Vision Transformer into the feature extraction network. Furthermore, regarding the scale differences for damaged houses in UAV images due to the changes in flying height, we apply the Bi-Directional Feature Pyramid Network (BiFPN) for multi-scale feature fusion to aggregate features with different resolutions and test the model. We took the 2021 Yangbi earthquake with a surface wave magnitude (Ms) of 6.4 in Yunan, China, as an example; the results show that the proposed model presents a better performance, with the average precision (AP) being increased by 9.31% and 1.23% compared to YOLOv3 and YOLOv5s, respectively, and a detection speed of 80 FPS, which is 2.96 times faster than YOLOv3. In addition, the transferability test for five other areas showed that the average accuracy was 91.23% and the total processing time was 4 min, while 100 min were needed for professional visual interpreters. The experimental results demonstrate that the YOLOv5s-ViT-BiFPN model can automatically detect damaged rural houses due to destructive earthquakes in UAV images with a good performance in terms of accuracy and timeliness, as well as being robust and transferable.


Data ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Davide Buffelli ◽  
Fabio Vandin

Graph Neural Networks (GNNs) rely on the graph structure to define an aggregation strategy where each node updates its representation by combining information from its neighbours. A known limitation of GNNs is that, as the number of layers increases, information gets smoothed and squashed and node embeddings become indistinguishable, negatively affecting performance. Therefore, practical GNN models employ few layers and only leverage the graph structure in terms of limited, small neighbourhoods around each node. Inevitably, practical GNNs do not capture information depending on the global structure of the graph. While there have been several works studying the limitations and expressivity of GNNs, the question of whether practical applications on graph structured data require global structural knowledge or not remains unanswered. In this work, we empirically address this question by giving access to global information to several GNN models, and observing the impact it has on downstream performance. Our results show that global information can in fact provide significant benefits for common graph-related tasks. We further identify a novel regularization strategy that leads to an average accuracy improvement of more than 5% on all considered tasks.


2022 ◽  
Author(s):  
Zhiwen Zheng ◽  
Nan Yu ◽  
Jingyang Zhang ◽  
Haipeng Dai ◽  
Qingshan Wang ◽  
...  

Abstract This paper proposes using a WiFi-based identification system, Wi-ID, to identify users from their unique hand gestures. Hand gestures from the popular game rock-paper-scissors are utilized for the system’s user authentication commands. The whole feature of three hand gestures is extracted instead of the single gesture feature extracted by the existing methods. Dynamic time warping (DTW) is utilized to analyze the amplitude information in the time domain based on linear discriminant analysis (LDA), while extract amplitude kurtosis (AP-KU) and shape skewness (SP-SK) are utilized to analyze the Wi-Fi signals energy distribution in the frequency domain. Based on the contributions of the extracted features, the random forests algorithm is utilized for weight inputs in the LSTM model. The experiment is conducted on a computer installed with an Intel 5300 wireless networking card to evaluate the effectiveness and robustness of the Wi-ID system. The experiment results showed the accuracy of the proposed Wi-ID system has a personal differentiation accuracy rate over 92%, and with an average accuracy of 96%. Authorized persons who performed incomplete hand gestures are identified with an accuracy of 92% and hostile intruders can be identified with a probability of 90%. Such performance demonstrates that the Wi-ID system achieved the aim of user authentication.


Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 31
Author(s):  
Farhad Samadzadegan ◽  
Farzaneh Dadrass Javan ◽  
Farnaz Ashtari Mahini ◽  
Mehrnaz Gholamshahi

Drones are becoming increasingly popular not only for recreational purposes but also in a variety of applications in engineering, disaster management, logistics, securing airports, and others. In addition to their useful applications, an alarming concern regarding physical infrastructure security, safety, and surveillance at airports has arisen due to the potential of their use in malicious activities. In recent years, there have been many reports of the unauthorized use of various types of drones at airports and the disruption of airline operations. To address this problem, this study proposes a novel deep learning-based method for the efficient detection and recognition of two types of drones and birds. Evaluation of the proposed approach with the prepared image dataset demonstrates better efficiency compared to existing detection systems in the literature. Furthermore, drones are often confused with birds because of their physical and behavioral similarity. The proposed method is not only able to detect the presence or absence of drones in an area but also to recognize and distinguish between two types of drones, as well as distinguish them from birds. The dataset used in this work to train the network consists of 10,000 visible images containing two types of drones as multirotors, helicopters, and also birds. The proposed deep learning method can directly detect and recognize two types of drones and distinguish them from birds with an accuracy of 83%, mAP of 84%, and IoU of 81%. The values of average recall, average accuracy, and average F1-score were also reported as 84%, 83%, and 83%, respectively, in three classes.


Sign in / Sign up

Export Citation Format

Share Document