An assessment of a genetic algorithm-based approach for optimising multi-body systems with applications to vehicle handling performance

2004 ◽  
Vol 36 (4) ◽  
pp. 320 ◽  
Author(s):  
Horia Haghiac ◽  
Imtiaz Haque ◽  
George Fadel
2013 ◽  
Vol 278-280 ◽  
pp. 58-61
Author(s):  
Shi Qing Ding

The MacPherson suspension mode is established by Adams/Car (vehicle multi body kinematics and dynamics software). The influence of the vehicle tire stiffness on vehicle handling performance is investigated by different tire stiffness. This study has certain guiding sense in the new vehicle development and auto fancier’s vehicle modification.


2012 ◽  
Vol 155-156 ◽  
pp. 386-390
Author(s):  
Zhong Hao Bai ◽  
Jing Fei ◽  
Wei Jie Ma

Based on the study of SAE J1980-2008 and FMVSS 208, MADYMO7.1 is used to establish a Multi-body and FE model for two OOP children, and the statistic test is implemented to verify the accuracy of the model. The airbag parameters impacting OOP children greatly and their ranges are selected to determine the objective function. With the Latin Hypercube Sampling method, the Kring approximate model is constructed, and multi-island genetic algorithm is used in subsequently parameters optimization. The results show that the proposed optimization method can provide effective protection for 6-year-old OOP children.


Author(s):  
Weimiao Yang ◽  
Pengpeng Feng ◽  
Jianwu Zhang

Non-linear system control has always been a difficult point for vehicle stabilization. To improve the vehicle handling performance, a comprehensive active-steering control method is proposed and derived. Different from traditional strategy, this new controller is based on a piecewise tyre modelling ideology combined with feedback linearization controlling method. In the linear region of wheel–terrain contact, vehicle dynamic system turns to be a linear system, an optimal control is designed for the sake of rapid response in tracking desired values. In the non-linear region, where the controlling difficulty always lies in, the tyre lateral force is described by a new polynomial formula model, which is simpler than magic formula model and more accurate than linear model. This new tyre modelling ideology ensures the feasibility of feedback linearization method in non-linear system control. To verify the proposed controller, a numerical seven-degrees-of-freedom vehicle model is built and validated by standard input simulation. Then, simulation under limit conditions, including high friction case and low friction case, are conducted and results are presented and discussed. Compared with optimal controller and free-control method, comprehensive controller has a much more desirable applicability in both cases and greatly improves the vehicle handling performance.


2014 ◽  
Vol 2014.23 (0) ◽  
pp. 83-86
Author(s):  
Takahiro Yokoyama ◽  
Koji hiratsuka ◽  
Rin Watanabe ◽  
Shinya Notomi ◽  
Shigeaki Suzuki

Sign in / Sign up

Export Citation Format

Share Document