full vehicle
Recently Published Documents


TOTAL DOCUMENTS

386
(FIVE YEARS 66)

H-INDEX

18
(FIVE YEARS 5)

CERUCUK ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 135
Author(s):  
Aldo Manggaranap Lumban Tobing

Sudimampir market is a complete shopping center in the city of Banjarmasin. Along with its running time, the market sudimampir into a crowded shopping mall visited by people of Banjarmasin and its surroundings for a complete and cost. Most visitors come the shop sudimampir market with a wholesale count.This research was conducted for analyzing the characteristics of the vehicle parked at the location of the study include: accumulation of parking, the average duration of parking, parking volume, the total number of its full vehicle parking ,and right parking  corner. Data collection was performed manually during holidays. Based on the survey results, in getting Parking Penatu is often not operating optimally by not using the appropriate SRP SNI and still perform manual calculations in the counter. Performance Laundry Parking can run optimally if SRP SNI and using the angle of 30 °. So it can produce 67 pieces SRP and able to accept 313 units wheeled vehicles 4. With so, parking can operate properly by its function, namely as a parking area in the city center.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiao-Liang Zhang ◽  
Juchao Liu ◽  
Jiamei Nie ◽  
Hao Wei ◽  
Long Chen

To address the problems of mechanical two-stage inerter-spring-damper (ISD) suspension such as excessive suspension elements, complex structure, and problematic engineering implementation, a hydro-pneumatic two-stage ISD suspension, which integrates hydro-pneumatic spring and inerter, is proposed. The full vehicle model of hydro-pneumatic ISD suspension is established based on the AMESim. Simulation analysis is performed to demonstrate the effectiveness and performances of the proposed suspension. The hydro-pneumatic ISD suspension prototype is developed and tested on four-poster tire-coupled road simulator. The results suggest that, compared with single-chamber hydro-pneumatic suspension, the hydro-pneumatic ISD one can significantly reduce the vibrations of the vehicle body and wheels, but at the expense of an excessive increase of suspension working space (SWS). In contrast, although proposed suspension is also a type of dual-chamber hydro-pneumatic one, it can not only reduce these vibrations but also downsize the SWS, which means it is the best choice for a more comfortable and safer ride.


Author(s):  
Han Xu ◽  
Youqun Zhao ◽  
Qiuwei Wang ◽  
Fen Lin ◽  
Wei Pi

Mechanical elastic wheel (MEW) has the advantages of explosion-proof and prick-proof, which is conducive to the safety and maneuverability of the vehicle. However, the research on the performance of the full vehicle equipped with MEW is rare. Considering the particular properties of the radial and cornering stiffness of MEW, this paper aims to take into account both ride comfort and yaw stability of the vehicle equipped with the MEW through a nonlinear control method. Firstly, a 9-DOF nonlinear full vehicle model with the MEW tire model is constructed. The tire model is fitted based on experimental data, which corrects the impacts of vertical load on the cornering characteristic of the MEW. Then the full vehicle system is decoupled into four subsystems with a single input and a single output each according to active disturbance rejection control (ADRC) technology. In this process, the coupling relationship between different motions of the original system is regarded as the disturbance. Afterward, a novel nonlinear extended state observer is proposed, which has a similar structure of traditional linear extended state observer but smaller estimation error. Next, the control law of Backstepping-ADRC for different subsystems are derived respectively based on the Lyapunov theory. For the first time, the Backstepping-ADRC method is applied to the decoupling control of four-wheel steering and active suspension systems. Furthermore, the parameters of the controllers are adjusted through a multi-objective optimization scheme. Finally, simulation results validate the effectiveness and robustness of the proposed controller, especially when encountering some disturbances. The indices of vehicle body attitude and ride comfort are improved significantly, and also the yaw stability is guaranteed simultaneously.


Author(s):  
Dirk Engel

ABSTRACT In this article, self-excited full-vehicle oscillations (power-hops) are introduced. Initially, results of full-vehicle measurements are shown followed by the presentation of a specially build test rig (longitudinal dynamics test rig). Subsequently, these oscillations are investigated by using simulation-based tools within multibody simulation–related full-vehicle modeling. Tire–road interaction is evaluated in this process either by characteristic curves or by a proprietary quasistatic tire model that returns overall tangential forces by evaluating the state of every discretized element within the footprint area.


2021 ◽  
Vol 17 (2) ◽  
pp. 151-165
Author(s):  
Atheel Abdul Zahra ◽  
Turki Abdalla

This work presents a Fuzzy based adaptive Sliding Mode Control scheme to deal with the control problem of full vehicle active suspension system and take into consideration the nonlinearities of the spring and damper, unmodeled dynamics as well as external disturbances. The control law of fuzzy-based Adaptive Sliding Mode Control scheme will update the parameters of fuzzy sliding mode control by using the stability analysis of Lyapunov criteria such that the convergence infinite time and the stability of the closed-loop is ensured. The proposed control scheme consists of four similar subsystems used for the four sides of the vehicle. The sub-control scheme contains two loops, the outer loop is built using a sliding mode controller with a fuzzy estimator to approximate and estimate the unknown parameters in the system. In the inner loop, a controller of type Fractional Order PID (FOPID) is utilized to create the required actuator force. All parameters in the four sub-control schemes are optimized utilizing Artificial Bee Colony (ABC) algorithm in order to improve the performance. The results indicate the effectiveness and good achievement of the proposed controller in providing the best ability to limit the vibration with good robustness properties in comparison with passive suspension system and using sliding mode control method. The controlled suspension system shows excellent results when it was tested with and without typical breaking and bending torques.


2021 ◽  
Author(s):  
Lorenzo Lugo ◽  
Mirco Bartolozzi ◽  
Wouter Vandermeulen ◽  
Theo Geluk ◽  
Steven Dom

Sign in / Sign up

Export Citation Format

Share Document