Different Strategies for Controlling Output Power Smoothing of a PMSG-Based Wind Energy Conversion Systems

Author(s):  
Alok Pratap ◽  
Abdul Motin Howlader ◽  
Tomonobu Senjyu ◽  
Atsushi Yona ◽  
Naomitsu Urasaki ◽  
...  

Abstract This paper deals with controlling the output power smoothing of a wind energy conversion systems (WECS) by using permanent magnet synchronous generator (PMSG). It uses the inertia control of the wind turbine and DC-link voltage control. The PMSG is connected to the grid through a generator-side converter and a grid-side inverter based on AC-DC-AC methods. The generator-side converter is used to control the torque of the PMSG while the grid-side inverter is used to control DC-Link voltage and grid voltage. Fuzzy logic is implemented to determine the torque command by using inertia of wind turbine. The inputs of the fuzzy logic are given by the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. From the proposed method, the generator torque is smoothed and kinetic energy generated by the inertia of the wind turbine is used to smooth the power fluctuations of PMSG. Also, a stable operation of WECS is achieved during the system fault by using the chopper circuit in the DC-link circuit. The output power smoothing is achieved with stability and low cost. The effectiveness of the proposed method is verified by the numerical simulations.

2013 ◽  
Vol 26 ◽  
pp. 135-146 ◽  
Author(s):  
Abdul Motin Howlader ◽  
Naomitsu Urasaki ◽  
Atsushi Yona ◽  
Tomonobu Senjyu ◽  
Ahmed Yousuf Saber

ENERGYO ◽  
2018 ◽  
Author(s):  
Alok Pratap ◽  
Abdul Motin Howlader ◽  
Tomonobu Senjyu ◽  
Atsushi Yona ◽  
Naomitsu Urasaki ◽  
...  

Author(s):  
Dr. R. C. Bansal ◽  
Dr. Ahmed F Zobaa ◽  
Dr. R. K. Saket

Design and successful operation of wind energy conversion systems (WECs) is a very complex task and requires the skills of many interdisciplinary skills, e.g., civil, mechanical, electrical and electronics, geography, aerospace, environmental etc. Performance of WECs depends upon subsystems like wind turbine (aerodynamic), gears (mechanical), generator (electrical); whereas the availability of wind resources are governed by the climatic conditions of the region concerned for which wind survey is extremely important to exploit wind energy. This paper presents a number of issues related to the power generation from WECs e.g. factors affecting wind power, their classification, choice of generators, main design considerations in wind turbine design, problems related with grid connections, wind-diesel autonomous hybrid power systems, reactive power control of wind system, environmental aspects of power generation, economics of wind power generation, and latest trend of wind power generation from off shore sites.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Abdeslam Jabal Laafou ◽  
Abdessalam Ait Madi ◽  
Adnane Addaim ◽  
Abdessamad Intidam

The proposed work presented in this paper is mainly focused on the control of the active and reactive stator powers generated by a wind energy conversion system (WECS) based on the dual feed induction generator (DFIG). This control is achieved by acting on the rotor side converter (RSC) to extract the maximum power from the wind turbine (WT) while regulating the rotor currents. Furthermore, another control objective is achieved by acting on the grid side converter (GSC), in which the DC bus voltage is maintained constant and a unity power factor is ensured. To do that, a new robust control known as active disturbance rejection control (ADRC) has been proposed and applied to the WECS. This control is based on the extended state observer (ESO), which is the main core of this algorithm; it makes the estimation and cancellation of the total effect of various uncertainties (internal and external disturbances) possible in real time. To validate the effectiveness of the proposed approach, the system was modeled and simulated by using the Matlab/Simulink software. Two tests, namely, tracking and robustness tests, were performed to compare the proposed ADRC technique and classical PI controllers. The obtained results are promising and have shown that the proposed control strategy based on ADRC, especially when varying the mode parameters, is performant and very useful.


Sign in / Sign up

Export Citation Format

Share Document