grid side
Recently Published Documents


TOTAL DOCUMENTS

569
(FIVE YEARS 254)

H-INDEX

23
(FIVE YEARS 7)

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 116
Author(s):  
Houda El Alami ◽  
Badre Bossoufi ◽  
Saad Motahhir ◽  
Eman H. Alkhammash ◽  
Mehedi Masud ◽  
...  

This paper presents a new contribution of the nonlinear control technique of electrical energy in a wind energy system. The nonlinear sliding mode technique used to control the powers of the DFIG-Generator is connected to the power grid by two converters (grid side and machine side). The proposed model is validated using tracking and robustness tests with a real wind speed. The control was developed under Matlab/Simulink, and the FPGA in the Loop technique was used to design the DFIG model. By employing a co-simulation, the purpose is to test the controller for the FPGA simulated model or system in its entirety. The results obtained by the cο-simulation show the efficiency of the proposed model in terms of speed and robustness with a rate THD = 0.95, and the proposed model of the sliding mode controller shows a significant improvement in the quality of energy produced by the wind system.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
D. Naveen Kilari ◽  
A. Hema Sekhar ◽  
N. Sudhakar Reddy ◽  
N.P. Dharani

PurposeThis paper aims to provide a permanent magnet synchronous generator (PMSG) wind turbine, which feeds electric power (AC) to the power grid. The converter, located on the machine side, is used to produce the full amount of wind power. Research on wind energy conversion system (WECS) is carried out in this study using a direct wind turbine in MATLAB with constant and variable speeds.Design/methodology/approachThis paper is about WECS using PMSG and is connected to a grid of two serial converters with common DC connections.FindingsThis paper aims to provide the value of DC connection voltage at its base, regardless of the wind speed alterations, the inverter's output ac voltage can be kept constant.Originality/valueThis paper aims to provide a Hill Climb Search maximum power point tracking (MPPT) algorithm is an effective control system for extracting maximum energy, also called voltage control, pitch control, phase-locked loop (PLL) controls, from a wind turbine. Using the Fuzzy controller, the grid side converter is controlled.


2021 ◽  
Author(s):  
Alon Kuperman

<p>It is well-known that attainable DC link voltage loop bandwidth in grid-connected converters operating with unity power factor is limited due to trade-off with AC-side current total harmonic distortion (THD). The letter reveals that THD requirement directly imposes the value of voltage loop gain magnitude at double-grid frequency; therefore the dynamic performance may be improved without deteriorating the grid-side current quality by modifying the controller structure such that the loop gain magnitude at double-grid frequency and the crossover frequency are decoupled. Experimental results validate the revealed findings.</p>


2021 ◽  
Author(s):  
Alon Kuperman

<p>It is well-known that attainable DC link voltage loop bandwidth in grid-connected converters operating with unity power factor is limited due to trade-off with AC-side current total harmonic distortion (THD). The letter reveals that THD requirement directly imposes the value of voltage loop gain magnitude at double-grid frequency; therefore the dynamic performance may be improved without deteriorating the grid-side current quality by modifying the controller structure such that the loop gain magnitude at double-grid frequency and the crossover frequency are decoupled. Experimental results validate the revealed findings.</p>


2021 ◽  
Author(s):  
Simin Pang ◽  
Ruiyuan Jia ◽  
Qihui Liu ◽  
Linlin Wu ◽  
Hui Liu

The phenomenon of three phase voltage imbalance frequently occurs in large-scale new energy grid connected areas in China; in severe cases, a large number of wind turbines will be disconnected from the grid. To solve the problem of the voltage imbalance at the point of common coupling (PCC), analyze the influence of generator parameters change on negative sequence voltage under the background of unbalanced power grid, a modeling method of base-frequency negative sequence impedance of doubly fed induction generator (DFIG) which including phase locked loop (PLL), rotor side converter (RSC) and grid side converter (GSC) is proposed. By establishing the negative sequence equivalent circuit of grid-connected system of DFIG, the relationship between the negative sequence voltage of PCC and the negative sequence impedance of DFIG is listed, and analyzing the sensitivity of control parameters link to base-frequency impedance, the parameter that has great influence on base-frequency negative sequence impedance of PCC is found out. Finally, the accuracy of impedance modeling and sensitivity analysis is verified by simulation studies.


Author(s):  
Mhamed Fannakh ◽  
Mohamed Larbi Elhafyani ◽  
Smail Zouggar ◽  
Hassan Zahboune

The fuzzy logic strategies reported in the literature about the control of direct drive permanent magnet synchronous generator (PMSG) connected to grid are limited in terms of inclusiveness and efficiency. So an overall control based on fuzzy logic and anti-windup compensation is proposed in this paper. Aiming at the inadequate of hill climb search (HCS) MPPT with fixed step size, the fuzzy logic is introduced in the stage of "generating rotor speed reference" to overcome the oscillations and slowness in traditional method. PI controllers are replaced by anti-windup fuzzy logic controllers in the "machine side control" stage and in "grid side control" stage to pertinently regulate the reference parameters. Then comparison tests with classical methods are implemented under varying climatic conditions. The results obtained demonstrate that the developed control is superior to other methods in response time (less than 4.528E-04 s), precision (an overshoot about 0.41%) and quality of produced energy (efficiency is 91%). The study verifying the feasibility and effectiveness of this algorithm in PMSG wind turbine connected to grid.


Author(s):  
Qasim Al Azze ◽  
Balasim М. Hussein ◽  
Hayder Salim Hameed

<span lang="EN-US">The paper proposes a protection to dual stator generator, reluctance rotor, from asymmetrical fault. Which prevents the dual stator generator, reluctance rotor, from electrical sage through working process in order to avoid any interruption in the generator-grid connection. The procedure consummated with injecting suitable reactive power during the fault period. The proposed method that makes it possible for wind turbine application via dual stator winding generators (DSWRG) synchronous mod to stay connected to the grid during asymmetrical faults. It has been built according to trusted simulating mode considering all tested parameters according to experiment work. The expirment, consider the DC link side stability and care about the behavior and performance of machine side parameter. As well the machineability is evaluated to ride through asymmetrical fault by observing the secondary side current which has a big role in saving grid side converter. The control takes a response within 200 ms after fault trigger recognition. The generator ability of dynamically remaining connected stable and existing in the network, which is sustained a series voltage disturbance by injecting appropriate amount of reactive power. The main interest required in this paper is the capability of a machine to overcome the asymmetrical fault.</span>


Author(s):  
Rania Moutchou ◽  
Ahmed Abbou

Wind power is one of the most promising renewable energy sources. Due to a constantly increasing penetration rate in power grids in order to comply with interconnection requirements. This article targets the impact of a permanent magnet synchronous generator (PMSG) which is the subject of most attention due to low cost and maintenance requirements, driven by a wind turbine with the necessary power electronic converters that allow wind turbines to operate at variable speed, and connected to the grid for power generation more efficiently by the phase-locked loop (PLL) method in order to synchronize it. Thus, the proposed control technicals are based on vector control (VC) to achieve maximum power point tracking (MPPT), keep the DC link voltage constant, and control the speed and current at the generator side and grid side in PMSG which provides controllability of the reactive power supplied to the network. Therefore, the response of the PLL is analyzed and the simulation results of the dynamic model of the system is developed in Matlab / Simulink. The study results exhibit the excellent performance with high robustness, by improving the system efficiency to 98.72%.


Sign in / Sign up

Export Citation Format

Share Document