disturbance rejection control
Recently Published Documents


TOTAL DOCUMENTS

1589
(FIVE YEARS 734)

H-INDEX

44
(FIVE YEARS 13)

Author(s):  
Jia Song ◽  
Jiangcheng Su ◽  
Yunlong Hu ◽  
Mingfei Zhao ◽  
Ke Gao

This paper investigates the stability and performance of the linear active disturbance rejection control (LADRC)–based system with uncertainties and external disturbance via transfer functions and a frequency-domain view. The performance of LADRC is compared with the state-observer-based state feedback control (SOSFC) and state feedback control (SFC). First, the transfer functions and the error transfer functions for LADRC, SOSFC, and SFC are studied using the state-space method. It is proven that the LADRC-, SOSFC-, and SFC-based closed-loop systems have the same transfer function from the reference input to the output and achieve the same control effects for the nominal system. Then, it is proven for the first time that the LADRC has a better anti-interference ability than the SOSFC and SFC. Besides, the asymptotic stability condition of LADRC-based closed-loop system considering large parameter perturbations is given first. Moreover, the sensitivity analysis of the closed-loop system is carried out. The results show that the LADRC has stronger robustness under parameter perturbations. According to the results, we conclude that the LADRC is of great disturbance rejection ability and strong robustness.


2022 ◽  
Vol 70 (3) ◽  
pp. 5133-5142
Author(s):  
Ibrahim M. Mehedi ◽  
Rachid Mansouri ◽  
Ubaid M. Al-Saggaf ◽  
Ahmed I. M. Iskanderani ◽  
Maamar Bettayeb ◽  
...  

2022 ◽  
pp. 1-35
Author(s):  
Ehab Hassan Eid Bayoumi ◽  
Hisham Soliman ◽  
Farag El-Sheikhi

This chapter develops a robust decentralized voltage tracker for islanded MGs. The proposed controller is robust against the plug and play operation of the MG, loads, and line parameter uncertainties. The problem is solved in the framework of linear matrix inequality (LMI). The proposed robust control represents the load changes and the parameter variations of lines connecting the DGs as a norm-bounded uncertainty. The proposed controller utilizes local measurements from DGs (i.e., it is totally decentralized). Control decentralization is accomplished by decomposing the global system into subsystems. The effect of the rest of the system on a specific subsystem is considered as a disturbance to minimize (disturbance rejection control). The controller is designed by the invariant-sets (approximated by the invariant ellipsoids). Different time-domain simulations are carried out as connecting and disconnected one or more DGs, connecting and disconnecting local loads DGs and transmission line parameters variation.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yang Cui ◽  
Cheng Liu ◽  
Yanming Cheng ◽  
Mahmoud Al Shurafa ◽  
Ilkyoo Lee ◽  
...  

Because the harmonics in the production process of copper electrowinning have an important impact on the electrical energy consumption, it is necessary to suppress the harmonics effectively. In this paper, a copper electrowinning rectifier with double inverse star circuit is selected as a study object in which a large number of harmonics mainly including the 5th, 7th, 11th, and 13th harmonics are generated and injected back into the power grid. The total harmonic distortion rate of the power grid is up to 29.19% before filtering. Therefore, a method combining the induction filtering method and the active filtering method is proposed to carry out comprehensive filtering. Simulation results demonstrate that the total harmonic distortion rate of the system decreases to 4.20%, which indicates that the proposed method can track the corresponding changes of harmonics when the load changes in real time and filter them out. In order to ensure and improve the effect of active filter, a current harmonic tracking control method based on linear active disturbance rejection control is proposed. Simulation results show that the total harmonic distortion rate decreases to 3.34%, which is also lower than that of hysteresis control. Compared with the conventional single filtering method, the new filtering method combining induction filtering with active filtering based on linear active disturbance rejection control in the copper electrowinning rectifier has obvious advantages.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bingyu Li ◽  
Jining Guo ◽  
Ying Fu

Induction heating systems are characterized by model uncertainty, nonlinearity, and external disturbances, and the control accuracy of the system directly affects the performance of the heated workpiece. In order to improve the temperature control accuracy and anti-interference performance of induction heating systems, this paper proposes a composite control strategy combining fractional-order PID (FOPID) and active disturbance rejection control (ADRC). Meanwhile, for the problem of too many controller tuning parameters, an improved quantum behavior particle swarm optimization (QPSO) algorithm is used to transform the nine parameters to be tuned in fractional-order PID active disturbance rejection control (FOPID-ADRC) into a minimization value optimization problem for solving. The simulation results show that the FOPID-ADRC controller improves the anti-interference capability and control accuracy of the temperature control system, and the improved QPSO algorithm has better global search capability and local optimal adaptation value.


2021 ◽  
pp. 153-180
Author(s):  
Jinhui Zhang ◽  
Yuanqing Xia ◽  
Zhongqi Sun ◽  
Duanduan Chen

Sign in / Sign up

Export Citation Format

Share Document