On a conditional invariance principle for a critical Galton–Watson branching process

Author(s):  
V. I. Afanasyev
2014 ◽  
Vol 24 (6) ◽  
Author(s):  
Elena E. Dyakonova

AbstractThe paper is concerned with critical branching processes in a Markov random environment. A conditional functional limit theorem for the number of particles in a process and a conditional invariance principle are proved. The asymptotic tail behaviour for the distributions of the maximum and the total number of particles in a process is found.


2007 ◽  
Vol 44 (02) ◽  
pp. 492-505
Author(s):  
M. Molina ◽  
M. Mota ◽  
A. Ramos

We investigate the probabilistic evolution of a near-critical bisexual branching process with mating depending on the number of couples in the population. We determine sufficient conditions which guarantee either the almost sure extinction of such a process or its survival with positive probability. We also establish some limiting results concerning the sequences of couples, females, and males, suitably normalized. In particular, gamma, normal, and degenerate distributions are proved to be limit laws. The results also hold for bisexual Bienaymé–Galton–Watson processes, and can be adapted to other classes of near-critical bisexual branching processes.


2021 ◽  
pp. 1-18
Author(s):  
CHRISTOPHE GALLESCO ◽  
DANIEL Y. TAKAHASHI

Abstract Mixing rates, relaxation rates, and decay of correlations for dynamics defined by potentials with summable variations are well understood, but little is known for non-summable variations. This paper exhibits upper bounds for these quantities for dynamics defined by potentials with square-summable variations. We obtain these bounds as corollaries of a new block coupling inequality between pairs of dynamics starting with different histories. As applications of our results, we prove a new weak invariance principle and a Hoeffding-type inequality.


Sign in / Sign up

Export Citation Format

Share Document