ON THE GENERAL UNIMPROVABLE ESTIMATES OF THE SINGULAR SERIES OF POSITIVE QUADRATIC FORMS

Author(s):  
G. GOGISHVILI
2006 ◽  
Vol 13 (4) ◽  
pp. 687-691
Author(s):  
Guram Gogishvili

Abstract Let 𝑚 ∈ ℕ, 𝑓 be a positive definite, integral, primitive, quaternary quadratic form of the determinant 𝑑 and let ρ(𝑓,𝑚) be the corresponding singular series. When studying the best estimates for ρ(𝑓,𝑚) with respect to 𝑑 and 𝑚 we proved in [Gogishvili, Trudy Tbiliss. Univ. 346: 72–77, 2004] that where 𝑏(𝑘) is the product of distinct prime factors of 16𝑘 if 𝑘 ≠ 1 and 𝑏(𝑘) = 3 if 𝑘 = 1. The present paper proves a more precise estimate where 𝑑 = 𝑑0𝑑1, if 𝑝 > 2; 𝑕(2) ⩾ –4. The last estimate for ρ(𝑓,𝑚) as a general result for quaternary quadratic forms of the above-mentioned type is unimprovable in a certain sense.


2000 ◽  
Vol 7 (2) ◽  
pp. 355-372
Author(s):  
G. Lomadze

Abstract A sum of the singular series corresponding to the number of representations of positive integers by some diagonal quadratic forms with integral coefficients is obtained.


1998 ◽  
Vol 5 (1) ◽  
pp. 91-100
Author(s):  
D. Khosroshvili

Abstract A general formula is derived for the number of representations r(n; f) of a natural number n by diagonal quadratic forms f with five variables of level 16. For f belonging to one-class series, r(n; f) coincides with the sum of a singular series, while in the case of a many-class series an additional term is required, for which the generalized theta-function introduced by T. V. Vepkhvadze [Vepkhvadze, Acta Arithmetica 53: 433–990] is used.


1998 ◽  
Vol 5 (4) ◽  
pp. 367-384
Author(s):  
G. Lomadze

Abstract Formulas for calculating the sum of singular series corresponding to the number of representations of integers by some quadratic forms in 12 variables with integral coefficient are derived.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter proves that Bruhat-Tits buildings exist. It begins with a few definitions and simple observations about quadratic forms, including a 1-fold Pfister form, followed by a discussion of the existence part of the Structure Theorem for complete discretely valued fields due to H. Hasse and F. K. Schmidt. It then considers the generic unramified cases; the generic semi-ramified cases, the generic ramified cases, the wild unramified cases, the wild semi-ramified cases, and the wild ramified cases. These cases range from a unique unramified quadratic space to an unramified separable quadratic extension, a tamely ramified division algebra, a ramified separable quadratic extension, and a unique unramified quaternion division algebra. The chapter also describes ramified quaternion division algebras D₁, D₂, and D₃ over K containing a common subfield E such that E/K is a ramified separable extension.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter assumes that (K, L, q) is a totally wild quadratic space of type E₇. The goal is to prove the proposition that takes into account Λ‎ of type E₇, D as the quaternion division algebra over K whose image in Br(K) is the Clifford invariant of q, and the trace and trace map. The chapter also considers two other propositions: the first states that if the trace map is not equal to zero, then the Moufang residues R₀ and R₁ are not indifferent; the second states that if the trace map is equal to zero, then the Moufang residues R₀ and R₁ are both indifferent.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter proves several more results about weak isomorphisms between Moufang sets arising from quadratic forms and involutory sets. It first fixes a non-trivial anisotropic quadratic space Λ‎ = (K, L, q) before considering two proper anisotropic pseudo-quadratic spaces. It then describes a quaternion division algebra and its standard involution, a second quaternion division algebra and its standard involution, and an involutory set with a quaternion division algebra and its standard involution. It concludes with one more small observation regarding a pointed anisotropic quadratic space and shows that there is a unique multiplication on L that turns L into an integral domain with a multiplicative identity.


Sign in / Sign up

Export Citation Format

Share Document