scholarly journals Optimization of a thin-walled element geometry using a system integrating neural networks and finite element method

2017 ◽  
Vol 62 (1) ◽  
pp. 435-442 ◽  
Author(s):  
P. Golewski ◽  
J. Gajewski ◽  
T. Sadowski

Abstract Artificial neural networks [ANNs] are an effective method for predicting and classifying variables. This article presents the application of an integrated system based on artificial neural networks and calculations by the finite element method [FEM] for the optimization of geometry of a thin-walled element of an air structure. To ensure optimal structure, the structure’s geometry was modified by creating side holes and ribs, also with holes. The main criterion of optimization was to reduce the structure’s weight at the lowest possible deformation of the tested object. The numerical tests concerned a fragment of an elevator used in the “Bryza” aircraft. The tests were conducted for networks with radial basis functions [RBF] and multilayer perceptrons [MLP]. The calculations described in the paper are an attempt at testing the FEM - ANN system with respect to design optimization.

Author(s):  
A.P. Markopoulos

Simulation of grinding is a topic of great interest due to the wide application of the process in modern industry. Several modeling methods have been utilized in order to accurately describe the complex phenomena taking place during the process, the most common being the Finite Element Method (FEM) and the Artificial Neural Networks (ANN). In the present work, a FEM model and an ANN model for precision surface grinding, are presented. Furthermore, a new approach, a combination of the aforementioned methods, is proposed, and a hybrid model is presented. This model comprises the advantages of both FEM and ANN models. The three kinds of models described in this work are able to accurately predict several grinding features that define the outcome of the process and the quality of the final product.


Sign in / Sign up

Export Citation Format

Share Document