ann models
Recently Published Documents


TOTAL DOCUMENTS

616
(FIVE YEARS 274)

H-INDEX

34
(FIVE YEARS 10)

Author(s):  
Wisal Adnan Al-Musawi ◽  
Wasan A. Wali ◽  
Mohammed Abd Ali Al-Ibadi

<p>This study aims to design a new architecture of the artificial neural networks (ANNs) using the Xilinx system generator (XSG) and its hardware co-simulation equivalent model using field programmable gate array (FPGA) to predict the behavior of Chua’s chaotic system and use it in hiding information. The work proposed consists of two main sections. In the first section, MATLAB R2016a was used to build a 3×4×3 feed forward neural network (FFNN). The training results demonstrate that FFNN training in the Bayesian regulation algorithm is sufficiently accurate to directly implement. The second section demonstrates the hardware implementation of the network with the XSG on the Xilinx artix7 xc7a100t-1csg324 chip. Finally, the message was first encrypted using a dynamic Chua system and then decrypted using ANN’s chaotic dynamics. ANN models were developed to implement hardware in the FPGA system using the IEEE 754 Single precision floating-point format. The ANN design method illustrated can be extended to other chaotic systems in general.</p>


10.29007/4sdt ◽  
2022 ◽  
Author(s):  
Vu Khanh Phat Ong ◽  
Quang Khanh Do ◽  
Thang Nguyen ◽  
Hoang Long Vo ◽  
Ngoc Anh Thy Nguyen ◽  
...  

The rate of penetration (ROP) is an important parameter that affects the success of a drilling operation. In this paper, the research approach is based on different artificial neural network (ANN) models to predict ROP for oil and gas wells in Nam Con Son basin. The first is the process of collecting and evaluating drilling parameters as input data of the model. Next is to find the network model capable of predicting ROP most accurately. After that, the study will evaluate the number of input parameters of the network model. The ROP prediction results obtained from different ANN models are also compared with traditional models such as the Bingham model, Bourgoyne &amp; Young model. These results have shown the competitiveness of the ANN model and its high applicability to actual drilling operations.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 244
Author(s):  
Arsalan Ghorbanian ◽  
Seyed Ali Ahmadi ◽  
Meisam Amani ◽  
Ali Mohammadzadeh ◽  
Sadegh Jamali

Mangroves, as unique coastal wetlands with numerous benefits, are endangered mainly due to the coupled effects of anthropogenic activities and climate change. Therefore, acquiring reliable and up-to-date information about these ecosystems is vital for their conservation and sustainable blue carbon development. In this regard, the joint use of remote sensing data and machine learning algorithms can assist in producing accurate mangrove ecosystem maps. This study investigated the potential of artificial neural networks (ANNs) with different topologies and specifications for mangrove classification in Iran. To this end, multi-temporal synthetic aperture radar (SAR) and multi-spectral remote sensing data from Sentinel-1 and Sentinel-2 were processed in the Google Earth Engine (GEE) cloud computing platform. Afterward, the ANN topologies and specifications considering the number of layers and neurons, learning algorithm, type of activation function, and learning rate were examined for mangrove ecosystem mapping. The results indicated that an ANN model with four hidden layers, 36 neurons in each layer, adaptive moment estimation (Adam) learning algorithm, rectified linear unit (Relu) activation function, and the learning rate of 0.001 produced the most accurate mangrove ecosystem map (F-score = 0.97). Further analysis revealed that although ANN models were subjected to accuracy decline when a limited number of training samples were used, they still resulted in satisfactory results. Additionally, it was observed that ANN models had a high resistance when training samples included wrong labels, and only the ANN model with the Adam learning algorithm produced an accurate mangrove ecosystem map when no data standardization was performed. Moreover, further investigations showed the higher potential of multi-temporal and multi-source remote sensing data compared to single-source and mono-temporal (e.g., single season) for accurate mangrove ecosystem mapping. Overall, the high potential of the proposed method, along with utilizing open-access satellite images and big-geo data processing platforms (i.e., GEE, Google Colab, and scikit-learn), made the proposed approach efficient and applicable over other study areas for all interested users.


2022 ◽  
Vol 9 ◽  
Author(s):  
Mohammad Ehteram ◽  
Fatemeh Panahi ◽  
Ali Najah Ahmed ◽  
Amir H. Mosavi ◽  
Ahmed El-Shafie

Predicting evaporation is essential for managing water resources in basins. Improvement of the prediction accuracy is essential to identify adequate inputs on evaporation. In this study, artificial neural network (ANN) is coupled with several evolutionary algorithms, i.e., capuchin search algorithm (CSA), firefly algorithm (FFA), sine cosine algorithm (SCA), and genetic algorithm (GA) for robust training to predict daily evaporation of seven synoptic stations with different climates. The inclusive multiple model (IMM) is then used to predict evaporation based on established hybrid ANN models. The adjusting model parameters of the current study is a major challenge. Also, another challenge is the selection of the best inputs to the models. The IMM model had significantly improved the root mean square error (RMSE) and Nash Sutcliffe efficiency (NSE) values of all the proposed models. The results for all stations indicated that the IMM model and ANN-CSA could outperform other models. The RMSE of the IMM was 18, 21, 22, 30, and 43% lower than those of the ANN-CSA, ANN-SCA, ANN-FFA, ANN-GA, and ANN models in the Sharekord station. The MAE of the IMM was 0.112 mm/day, while it was 0.189 mm/day, 0.267 mm/day, 0.267 mm/day, 0.389 mm/day, 0.456 mm/day, and 0.512 mm/day for the ANN-CSA, ANN-SCA, and ANN-FFA, ANN-GA, and ANN models, respectively, in the Tehran station. The current study proved that the inclusive multiple models based on improved ANN models considering the fuzzy reasoning had the high ability to predict evaporation.


2022 ◽  
Author(s):  
Selcuk Cankurt ◽  
Abdulhamit Subasi

AbstractOver the last decades, several soft computing techniques have been applied to tourism demand forecasting. Among these techniques, a neuro-fuzzy model of ANFIS (adaptive neuro-fuzzy inference system) has started to emerge. A conventional ANFIS model cannot deal with the large dimension of a dataset, and cannot work with our dataset, which is composed of a 62 time-series, as well. This study attempts to develop an ensemble model by incorporating neural networks with ANFIS to deal with a large number of input variables for multivariate forecasting. Our proposed approach is a collaboration of two base learners, which are types of the neural network models and a meta-learner of ANFIS in the framework of the stacking ensemble. The results show that the stacking ensemble of ANFIS (meta-learner) and ANN models (base learners) outperforms its stand-alone counterparts of base learners. Numerical results indicate that the proposed ensemble model achieved a MAPE of 7.26% compared to its single-instance ANN models with MAPEs of 8.50 and 9.18%, respectively. Finally, this study which is a novel application of the ensemble systems in the context of tourism demand forecasting has shown better results compared to those of the single expert systems based on the artificial neural networks.


2022 ◽  
Vol 21 (4) ◽  
pp. 364-375
Author(s):  
M. M.M. Elshamy ◽  
A. N. Tiraturyan ◽  
E. V. Uglova

Introduction. This paper studies the capability of different types of artificial neural networks (ANN) to predict the modulus of elasticity of pavement layers for flexible asphalt pavement under operating conditions. The falling weight deflectometer (FWD) was selected to simulate the dynamic traffic loads and measure the flexural bowls on the road surface to obtain the database of ANN models.Materials and Methods. Artificial networks types (the feedforward backpropagation, layer-recurrent, cascade back- propagation, and Elman backpropagation) are developed to define the optimal ANN model using Matlab software. To appreciate the efficiency of every model, we used the constructed ANN models for predicting the elastic modulus values for 25 new pavement sections that were not used in the process of training, validation, or testing to ensure its suitability. The efficiency measures such as mean absolute error (MAE), the coefficient of multiple determinations R2, Root Mean Square Error (RMSE), Mean Absolute Percent Error (MAPE) values were obtained for all models results.Results. Based on the performance parameters, it was concluded that among these algorithms, the feed-forward model has a better performance compared to the other three ANN types. The results of the best four models were compared to each other and to the actual data obtained to determine the best method.Discussion and Conclusions. The differences between the results of the four best models for the four types of algorithms used were very small, as they showed the closeness between them and the actual values. The research results confirm the possibility of ANN-based models to evaluate the elastic modulus of pavement layers speedily and reliably for using it in the structural assessment of (NDT) flexible pavement data at the appropriate time.


2022 ◽  
pp. 146-165
Author(s):  
Sarat Chandra Nayak ◽  
Subhranginee Das ◽  
Bijan Bihari Misra

Financial time series are highly nonlinear and their movement is quite unpredictable. Artificial neural networks (ANN) have ample applications in financial forecasting. Performance of ANN models mainly depends upon its training. Though gradient descent-based methods are common for ANN training, they have several limitations. Fireworks algorithm (FWA) is a recently developed metaheuristic inspired from the phenomenon of fireworks explosion at night, which poses characteristics such as faster convergence, parallelism, and finding the global optima. This chapter intends to develop a hybrid model comprising FWA and ANN (FWANN) used to forecast closing prices series, exchange series, and crude oil prices time series. The appropriateness of FWANN is compared with models such as PSO-based ANN, GA-based ANN, DE-based ANN, and MLP model trained similarly. Four performance metrics, MAPE, NMSE, ARV, and R2, are considered as the barometer for evaluation. Performance analysis is carried out to show the suitability and superiority of FWANN.


2022 ◽  
pp. 1077-1097
Author(s):  
Nguyen Quang Dat ◽  
Ngoc Anh Nguyen Thi ◽  
Vijender Kumar Solanki ◽  
Ngo Le An

To control water resources in many domains such as agriculture, flood forecasting, and hydro-electrical dams, forecasting water level needs to predict. In this article, a new computational approach using a data driven model and time series is proposed to calculate the forecast water level in short time. Concretely, wavelet-artificial neural network (WAANN) and time series (TS) are combined together called WAANN-TS that encourages the advantage of each model. For this real time project work, Yen Bai station, Northwest Vietnam was chosen as an experimental case study to apply the proposed model. Input variables into the Wavelet-ANN structure is water level data. Time series and ANN models are built, and their performances are compared. The results indicate the greater accuracy of the proposed models at Hanoi station. The final proposal WAANN−TS for water level forecasting shows good performance with root mean square error (RMSE) from 10−10 to 10−11.


2022 ◽  
pp. 1287-1300
Author(s):  
Balaji Prabhu B. V. ◽  
M. Dakshayini

Demand forecasting plays an important role in the field of agriculture, where a farmer can plan for the crop production according to the demand in future and make a profitable crop business. There exist a various statistical and machine learning methods for forecasting the demand, selecting the best forecasting model is desirable. In this work, a multiple linear regression (MLR) and an artificial neural network (ANN) model have been implemented for forecasting an optimum societal demand for various food crops that are commonly used in day to day life. The models are implemented using R toll, linear model and neuralnet packages for training and optimization of the MLR and ANN models. Then, the results obtained by the ANN were compared with the results obtained with MLR models. The results obtained indicated that the designed models are useful, reliable, and quite an effective tool for optimizing the effects of demand prediction in controlling the supply of food harvests to match the societal needs satisfactorily.


Sign in / Sign up

Export Citation Format

Share Document