Journal of the Southern African Institute of Mining and Metallurgy
Latest Publications


TOTAL DOCUMENTS

802
(FIVE YEARS 249)

H-INDEX

12
(FIVE YEARS 4)

Published By Academy Of Science Of South Africa

2411-9717, 0038-223x

Author(s):  
J. Calitz ◽  
S. Kok ◽  
D. Delport

Altering the microstructure in order to improve the tensile properties of bow shackles resulted in inconsistency in the fatigue performance. This raises the question whether the inconsistency in fatigue life can be attributed to microstructural changes along the profile of the shackle or to decarburization at the surface. Bow shackles forged from 080M40 (EN8) material were subjected to different heat treatments in order to alter the microstructure. The shackles were subjected to five different fatigue load cases, which represented typical loads experienced at termination points for an overhead power line with a span length of 400 m, with changes in conductor type, configuration, wind, and ice loading. Although the change in microstructure does improve both the tensile and fatigue performance, we found that the depth of the decarburization layer has a greater effect on the high cycle fatigue life of bow shackles than the non-homogeneous microstructure.


Author(s):  
M. van Rooyen ◽  
P.J. van Staden ◽  
K.A. du Preez

Mine-impacted water, including acid mine drainage (AMD), is a global problem. While precipitation of dissolved metals and neutralization of acidity from mine-impacted water is accomplished relatively easily with lime addition, removal of sulphate to permissible discharge limits is challenging. This paper presents a high-level comparison of four sulphate removal technologies, namely reverse osmosis, ettringite precipitation, barium carbonate addition, and biological sulphate reduction. Primarily operating costs, based on reagent and utility consumptions, are compared. Each process is shown to be subject to a unique set of constraints which might favour one over another for a specific combination of location and AMD composition. Access to and cost of reagents would be a key cost component to any of the processes studied. The total cost calculated for each process also depends on the type of effluents that are allowed to be discharged.


Author(s):  
S. Iyengar ◽  
D. Sethuram ◽  
R. Shobha ◽  
P.G. Koppad

T1B2 and CeO2 particle-reinforced A16061 hybrid composites were manufactured using stir casting and hot rolling techniques. The base alloy and composites were hot-rolled at 500°C and a 50% reduction was achieved through 12 passes. The effect of varying TB2 and CeO2 particle additions on the microstructure and mechanical properties of the Al6061 matrix was studied. Scanning electron microscopy showed uniform dispersion of both the reinforcements, with good interfacial bonding. Microhardness and tensile properties like yield and tensile strength were found to be higher for hybrid composite with 2.5% TiB2 and 2.5% CeO2 compared to Al6061 alloy and other hybrid composites. The increased tensile strength is attributed to good dispersion and interfacial bonding between the particles and Al6061 matrix. Fracture analysis using a scanning electron microscope revealed ductile fracture for the Al6061 alloy and mixed characteristics of ductile-brittle fracture for hybrid composites.


Author(s):  
K.A. Annan ◽  
R.C. Nkhoma ◽  
S. Ngomane

The effects of welding current, electrode force, and welding time in a resistance spot weld were studied to investigate the effectiveness of welded joints between a thin EN10130: DC04 material and a thicker 817M40 part, through analysis of the microstructural and mechanical properties. All welded specimens were subjected to tensile testing at room temperature (25°C) and sub-zero temperature (-46°C) to test the strength of the welded joints. No full button failure was observed at either room temperature or sub-zero temperature after optimization of the weldng parameters. The fusion zone was observed to consist mainly of martensitic phase, due to rapid quenching, while the HAZ was composed of clusters of martensite in a ferrite and bainite matrix. The base 817M40 metal remained fully ferritic after welding. The hardness was found to increase with increasing welding current. An increase in nugget size, indicating good fusion of the weld, was observed with an increase in the welding current.


Author(s):  
A.F. Silva ◽  
J.M.G. Sotomayor ◽  
V.F.N. Torres

Geotechnical monitoring plays an important role in the detection of operational safety issues in the slopes of open pits. Currently, monitoring companies offer several solutions involving robust technologies that boast highly reliable data and the ability to control risky conditions. The monitoring data must be processed and analysed so as to allow the results to be used for several purposes, thereby providing information that can be used to manage operational actions and optimize mining plans or engineering projects. In this work we analysed monitoring data (pore pressure and displacement) and its correlation with the tension and displacement of the mass of an established failure slope calculated using the finite element method. To optimize the back-analysis, a Python language routine was developed using input data (point coordinates, parameter matrix, and critical section) to use software with the rock mass parameters (cohesion, friction angle, Young's modulus, and Poisson's ratio). For the back-analysis, the Mohr-Coulomb criterion was applied with the shear strength reduction technique to obtain the strength reduction factor. The results were consistent with both the measured displacements and the maximum deformation contours, revealing the possible failure mechanism, allowing the strength parameters to be calibrated according to the slope failure conditions, and providing information about the contribution of each variable (parameter) to the slope failure in the study area.


Author(s):  
A.C. Johnstone

The aim of the study is to determine if pit lakes are a sustainable coal mine closure option in South African. The water balance, chemistry, limnology, and bacterial population of three selected pit lakes were investigated. The lakes are in the three major coal basins of South Africa and are associated with different lithologies and mining methods. The major factors driving the water balance of the pit lakes are direct rainfall, runoff, inflow from old mine workings, and groundwater infiltration, with the major losses being evaporation or discharge onto surface. The study indicated that pit lakes can be designed as 'terminal sinks' to provide a sustainable mine closure option. The pit lakes sampled have an alkaline pH, and mostly a sodium/calcium sulphate water with total dissolved solids content of less than 3000 mg/l. The phytoplankton and microbiological data indicates that the pit lakes support aquatic life. The study shows that correctly designed pit lakes can be an environmentally sustainable closure option for South Africa's coal mines. A suggested design manual has been developed to assist mine owners and regulators in developing sustainable coal mine pit lakes as a closure option.


Author(s):  
P. Pagé ◽  
P. Yang ◽  
L. Li ◽  
R Simon

The Mathews-Potvin stability method is widely used in the Canadian mining industry as a starting point to determine the maximum dimensions of mine stopes. However, it cannot be applied to inclined (more frequently encountered) mine stopes without conducting numerical modelling to obtain the stress factor A, defined as a function of the ratio of unconfined compressive strength of intact rock to the induced principal stress on the exposed stope walls. The need to conduct numerical modelling significantly limits the application of the Mathews-Potvin method. In addition, given its empirical nature and main application for preliminary design, it is deemed undesirable to conduct numerical modelling, especially elaborate modelling. Alternatively, theoretical methods can provide a much simpler and quicker way to estimate stresses around stopes and the corresponding stress factors. Over the years, a large number of studies have been conducted to estimate stresses around openings excavated with various cross-sections. However, theoretical or graphical solutions remain unavailable for mine stopes that typically consist of horizontal floor and roof, and two parallel inclined walls (hangingwall and footwall). To remedy this situation, a series of numerical simulations is first performed for openings with vertical and inclined walls, including typical stopes commonly encountered in underground mines. A group of empirical solutions is then formulated to estimate the induced principal stresses at the roof centre and mid-height of the stope walls. The validity and predictability of the proposed solution have been verified using additional numerical simulations. The proposed solution can thus be used to calculate stresses and the resultant stress factors A around typical mine stopes with any inclination angle and height to width ratio, under any in-situ stress state, without conducting numerical modelling.


Author(s):  
B.P. Watson ◽  
W. Theron ◽  
N. Fernandes ◽  
W.O. Kekana ◽  
M.P. Mahlangu ◽  
...  

The research described in this paper was done to confirm the Upper Group 2 (UG2) PlatMine peak pillar strength formula (Watson et al., 2007), which was determined from a back-analysis of failed and unfailed pillars. Underground measurements were made on a stable pillar that was loaded by firstly reducing it's length and then by mining the surrounding pillars until pillar failure took place. The pillar was instrumented with suitably positioned strain cells and closure meters, which allowed both the average pillar stress and strain to be determined. The paper describes the methodology applied to identify a suitable position for the instrumentation, as well as the results. A stress/strain curve is presented for a UG2 pillar with a w/h ratio of 2.0, at Booysendal Platinum Mine. The measured pillar strength was similar to the predicted strength using the PlatMine pillar strength formula for UG2 pillars. The PlatMine formula has been successfully implemented on Booysendal Platinum Mine, and about 3 670 pillars have been cut without a single failure. An additional revenue of US$1.3 billion was calculated for the 25-year life of the mine as a direct result of the improved pillar design, given the January 2020 platinum group metals basket price. An extended life of mine and better mining efficiencies will also be realized.


Author(s):  
D. Orynbassar ◽  
N. Madani

This work addresses the problem of geostatistical simulation of cross-correlated variables by factorization approaches in the case when the sampling pattern is unequal. A solution is presented, based on a Co-Gibbs sampler algorithm, by which the missing values can be imputed. In this algorithm, a heterotopic simple cokriging approach is introduced to take into account the cross-dependency of the undersampled variable with the secondary variable that is more available over the entire region. A real gold deposit is employed to test the algorithm. The imputation results are compared with other Gibbs sampler techniques for which simple cokriging and simple kriging are used. The results show that heterotopic simple cokriging outperforms the other two techniques. The imputed values are then employed for the purpose of resource estimation by using principal component analysis (PCA) as a factorization technique, and the output compared with traditional factorization approaches where the heterotopic part of the data is removed. Comparison of the results of these two techniques shows that the latter leads to substantial losses of important information in the case of an unequal sampling pattern, while the former is capable of reproducing better recovery functions.


Author(s):  
J. Pelders ◽  
F. Magweregwede ◽  
S.M. Rupprecht

Increased depths of conventional gold and platinum mines, longer travelling times as working places move further from the shaft, and ancillary activities taking place in the mining cycle reduce the useable time spent at the workface. Current shift lengths of 8 hours 20 minutes may no longer be adequate to complete required mining activities.The impact of mineworker commuting times on shift work is also not well understood. The aim of this research was to draft a framework to optimize shift cycles in order to maximize productivity, health, safety, and wellness in the South African mining sector. The framework was informed by a review of the literature, case studies at a local gold mine and platinum mine, and a workshop with industry experts. The findings indicate potential advantages of extended shift lengths and continuous operations, such as improved productivity, asset utilization, and employee morale. However, concerns included fatigue and the associated safety hazards, particularly when working longer shifts, night shifts, and numerous consecutive shifts. Job demands, personal factors, and commuting times are further considerations when scheduling shifts. The ideal shift system for the mining sector should holistically consider and balance operational requirements, health and safety, and employees' and their families' requirements, and suit the unique needs of each operation. Changes in shift cycles will require a structured change management process, which involves all stakeholders, and could help to enhance the viability of the South African mining sector.


Sign in / Sign up

Export Citation Format

Share Document