scholarly journals Solutions of Navier-Stokes Equations with Coriolis Force in the Rotational Framework

In this article, for 0 ≤m<∞ and the index vectors q=(q_1,q_2 ,q_3 ),r=(r_1,r_2,r_3) where 1≤q_i≤∞,1<r_i<∞ and 1≤i≤3, we study new results of Navier-Stokes equations with Coriolis force in the rotational framework in mixed-norm Sobolev-Lorentz spaces H ̇^(m,r,q) (R^3), which are more general than the classical Sobolev spaces. We prove the existence and uniqueness of solutions to the Navier-Stokes equations (NSE) under Coriolis force in the spaces L^∞([0, T]; H ̇^(m,r,q) ) by using topological arguments, the fixed point argument and interpolation inequalities. We have achieved new results compared to previous research in the Navier-Stokes problems.

Author(s):  
James C. Robinson

There is currently no proof guaranteeing that, given a smooth initial condition, the three-dimensional Navier–Stokes equations have a unique solution that exists for all positive times. This paper reviews the key rigorous results concerning the existence and uniqueness of solutions for this model. In particular, the link between the regularity of solutions and their uniqueness is highlighted. This article is part of the theme issue ‘Stokes at 200 (Part 1)’.


2017 ◽  
Vol 25 (1) ◽  
pp. 195-206
Author(s):  
Khosro Sayevand ◽  
Dumitru Baleanu ◽  
Fatemeh Sahsavand

Abstract In this report, a novel difference scheme is used to analyzing the Navier - Stokes problems of fractional order. Existence and uniqueness of the suggested approach with a Lipschitz condition and Picard theorem are proved. Furthermore, we find a discrete analogue of the derivative and then stability and convergence of our strategy in multi dimensional domain are proved.


Author(s):  
Tomás Caraballo ◽  
José Real ◽  
Takeshi Taniguchi

We prove the existence and uniqueness of solutions for a stochastic version of the three-dimensional Lagrangian averaged Navier–Stokes equation in a bounded domain. To this end, we previously prove some existence and uniqueness results for an abstract stochastic equation and justify that our model falls within this framework.


2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Tomás Caraballo ◽  
José Real ◽  
Peter E. Kloeden

AbstractIn this paper we improve Theorem 7 in [1] which deals with the existence and uniqueness of solutions of the three dimensional globally modified Navier-Stokes equations.


Author(s):  
Karl Kunisch ◽  
Eduardo Renteria Casas

Existence and uniqueness of solutions to the Navier-Stokes equation in dimension two with forces in the space $L^q( (0,T); \bWmop)$ for $p$ and $q$ in  appropriate parameter ranges are proven. The case of spatially measured-valued inhomogeneities is included. For the associated Stokes equation the well-posedness results are verified in arbitrary dimensions with $1 < p, q < \infty$ arbitrary.


2020 ◽  
Vol 65 (6) ◽  
pp. 23-30
Author(s):  
Thinh Tran Quang ◽  
Thuy Le Thi

We consider the 2D g-Bénard problem in domains satisfying the Poincaré inequality with homogeneous Dirichlet boundary conditions. We prove the existence and uniqueness of global weak solutions. The obtained results particularly extend previous results for 2D g-Navier-Stokes equations and 2D Bénard problem.


Sign in / Sign up

Export Citation Format

Share Document