Resonant-Superlinear Elliptic Problems Using Variational Methods

2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Edcarlos Domingos da Silva ◽  
Bruno Ribeiro

AbstractIn this work we establish existence and multiplicity of solutions for resonant-superlinear elliptic problems using appropriate variational methods. The nonlinearity is resonant at −∞ and superlinear at +∞ and the resonance phenomena occurs precisely in the first eigenvalue of the corresponding linear problem. Our main theorems are stated without the well known Ambrosetti-Rabinowitz condition.

Author(s):  
Claudianor O. Alves ◽  
Ziqing Yuan ◽  
Lihong Huang

Abstract This paper concerns with the existence of multiple solutions for a class of elliptic problems with discontinuous nonlinearity. By using dual variational methods, properties of the Nehari manifolds and Ekeland's variational principle, we show how the ‘shape’ of the graph of the function A affects the number of nontrivial solutions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Zhen Zhi ◽  
Lijun Yan ◽  
Zuodong Yang

AbstractIn this paper, we consider the existence of nontrivial solutions for a fractional p-Laplacian equation in a bounded domain. Under different assumptions of nonlinearities, we give existence and multiplicity results respectively. Our approach is based on variational methods and some analytical techniques.


Author(s):  
Qing-Mei Zhou ◽  
Ke-Qi Wang

AbstractIn this paper we consider a nonlinear eigenvalue problem driven by the fractional Laplacian. By applying a version of the three-critical-points theorem we obtain the existence of three solutions of the problem in


2016 ◽  
Vol 16 (1) ◽  
pp. 51-65 ◽  
Author(s):  
Salvatore A. Marano ◽  
Sunra J. N. Mosconi ◽  
Nikolaos S. Papageorgiou

AbstractThe existence of multiple solutions to a Dirichlet problem involving the ${(p,q)}$-Laplacian is investigated via variational methods, truncation-comparison techniques, and Morse theory. The involved reaction term is resonant at infinity with respect to the first eigenvalue of ${-\Delta_{p}}$ in ${W^{1,p}_{0}(\Omega)}$ and exhibits a concave behavior near zero.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yong-Yi Lan ◽  
Xian Hu ◽  
Bi-Yun Tang

In this paper, we study multiplicity of positive solutions for a class of semilinear elliptic equations with the nonlinearity containing singularity and Hardy-Sobolev exponents. Using variational methods, we establish the existence and multiplicity of positive solutions for the problem.


2012 ◽  
Vol 14 (01) ◽  
pp. 1250001 ◽  
Author(s):  
EUGENIO MASSA ◽  
PEDRO UBILLA

Via variational methods, we study multiplicity of solutions for the problem [Formula: see text] where a simple example for g(x, u) is |u|p-2u; here a, λ are real parameters, 1 < q < 2 < p ≤ 2* and b(x) is a function in a suitable space Lσ. We obtain a class of sign changing coefficients b(x) for which two non-negative solutions exist for any λ > 0, and a total of five nontrivial solutions are obtained when λ is small and a ≥ λ1. Note that this type of results are valid even in the critical case.


2019 ◽  
Vol 38 (3) ◽  
pp. 79-96 ◽  
Author(s):  
Ahmed Sanhaji ◽  
A. Dakkak

The aim of this paper is to establish the existence of the principal eigencurve of the p-Laplacian operator with the nonconstant weight subject to Neumann boundary conditions. We then study the nonresonce phenomena under the first eigenvalue and under the principal eigencurve, thus we obtain existence results for some nonautonomous Neumann elliptic problems involving the p-Laplacian operator.


2014 ◽  
Vol 33 (2) ◽  
pp. 203-217 ◽  
Author(s):  
El Miloud Hssini ◽  
Mohammed Massar ◽  
Najib Tsouli

This paper is concerned with the existence and multiplicity of solutions for a class of $p(x)$-Kirchhoff type equations with Neumann boundary condition. Our technical approach is based on variational methods.


Sign in / Sign up

Export Citation Format

Share Document