scholarly journals Blow-Up Phenomena and Asymptotic Profiles Passing from H 1-Critical to Super-Critical Quasilinear Schrödinger Equations

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Daniele Cassani ◽  
Youjun Wang

Abstract We study the asymptotic profile, as ℏ → 0 {\hbar\rightarrow 0} , of positive solutions to - ℏ 2 ⁢ Δ ⁢ u + V ⁢ ( x ) ⁢ u - ℏ 2 + γ ⁢ u ⁢ Δ ⁢ u 2 = K ⁢ ( x ) ⁢ | u | p - 2 ⁢ u , x ∈ ℝ N , -\hbar^{2}\Delta u+V(x)u-\hbar^{2+\gamma}u\Delta u^{2}=K(x)\lvert u\rvert^{p-2% }u,\quad x\in\mathbb{R}^{N}, where γ ⩾ 0 {\gamma\geqslant 0} is a parameter with relevant physical interpretations, V and K are given potentials and the dimension N is greater than or equal to 5, as we look for finite L 2 {L^{2}} -energy solutions. We investigate the concentrating behavior of solutions when γ > 0 {\gamma>0} and, differently from the case γ = 0 {\gamma=0} where the leading potential is V, the concentration is here localized by the source potential K. Moreover, surprisingly for γ > 0 {\gamma>0} we find a different concentration behavior of solutions in the case p = 2 ⁢ N N - 2 {p=\frac{2N}{N-2}} and when 2 ⁢ N N - 2 < p < 4 ⁢ N N - 2 {\frac{2N}{N-2}<p<\frac{4N}{N-2}} . This phenomenon does not occur when γ = 0 {\gamma=0} .

Author(s):  
Riccardo Molle ◽  
Donato Passaseo

AbstractThe paper deals with the equation $$-\Delta u+a(x) u =|u|^{p-1}u $$ - Δ u + a ( x ) u = | u | p - 1 u , $$u \in H^1({\mathbb {R}}^N)$$ u ∈ H 1 ( R N ) , with $$N\ge 2$$ N ≥ 2 , $$p> 1,\ p< {N+2\over N-2}$$ p > 1 , p < N + 2 N - 2 if $$N\ge 3$$ N ≥ 3 , $$a\in L^{N/2}_{loc}({\mathbb {R}}^N)$$ a ∈ L loc N / 2 ( R N ) , $$\inf a> 0$$ inf a > 0 , $$\lim _{|x| \rightarrow \infty } a(x)= a_\infty $$ lim | x | → ∞ a ( x ) = a ∞ . Assuming that the potential a(x) satisfies $$\lim _{|x| \rightarrow \infty }[a(x)-a_\infty ] e^{\eta |x|}= \infty \ \ \forall \eta > 0$$ lim | x | → ∞ [ a ( x ) - a ∞ ] e η | x | = ∞ ∀ η > 0 , $$ \lim _{\rho \rightarrow \infty } \sup \left\{ a(\rho \theta _1) - a(\rho \theta _2) \ :\ \theta _1, \theta _2 \in {\mathbb {R}}^N,\ |\theta _1|= |\theta _2|=1 \right\} e^{\tilde{\eta }\rho } = 0 \quad \text{ for } \text{ some } \ \tilde{\eta }> 0$$ lim ρ → ∞ sup a ( ρ θ 1 ) - a ( ρ θ 2 ) : θ 1 , θ 2 ∈ R N , | θ 1 | = | θ 2 | = 1 e η ~ ρ = 0 for some η ~ > 0 and other technical conditions, but not requiring any symmetry, the existence of infinitely many positive multi-bump solutions is proved. This result considerably improves those of previous papers because we do not require that a(x) has radial symmetry, or that $$N=2$$ N = 2 , or that $$|a(x)-a_\infty |$$ | a ( x ) - a ∞ | is uniformly small in $${\mathbb {R}}^N$$ R N , etc. ....


Sign in / Sign up

Export Citation Format

Share Document