quadratic potential
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 27)

H-INDEX

19
(FIVE YEARS 2)

Nonlinearity ◽  
2021 ◽  
Vol 34 (12) ◽  
pp. 8283-8310
Author(s):  
Rémi Carles ◽  
Guillaume Ferriere

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Katsushi Ito ◽  
Takayasu Kondo ◽  
Kohei Kuroda ◽  
Hongfei Shu

Abstract We study the WKB periods for the (r + 1)-th order ordinary differential equation (ODE) which is obtained by the conformal limit of the linear problem associated with the $$ {A}_r^{(1)} $$ A r 1 affine Toda field equation. We compute the quantum corrections by using the Picard-Fuchs operators. The ODE/IM correspondence provides a relation between the Wronskians of the solutions and the Y-functions which satisfy the thermodynamic Bethe ansatz (TBA) equation related to the Lie algebra Ar. For the quadratic potential, we propose a formula to show the equivalence between the logarithm of the Y-function and the WKB period, which is confirmed by solving the TBA equation numerically.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ituen B. Okon ◽  
E. Omugbe ◽  
Akaninyene D. Antia ◽  
C. A. Onate ◽  
Louis E. Akpabio ◽  
...  

AbstractIn this research article, the modified approximation to the centrifugal barrier term is applied to solve an approximate bound state solutions of Dirac equation for spin and pseudospin symmetries with hyperbolic Hulthen plus hyperbolic exponential inversely quadratic potential using parametric Nikiforov–Uvarov method. The energy eigen equation and the unnormalised wave function were presented in closed and compact form. The nonrelativistic energy equation was obtain by applying nonrelativistic limit to the relativistic spin energy eigen equation. Numerical bound state energies were obtained for both the spin symmetry, pseudospin symmetry and the non relativistic energy. The screen parameter in the potential affects the solutions of the spin symmetry and non-relativistic energy in the same manner but in a revised form for the pseudospin symmetry energy equation. In order to ascertain the accuracy of the work, the numerical results obtained was compared to research work of existing literature and the results were found to be in excellent agreement to the existing literature. The partition function and other thermodynamic properties were obtained using the compact form of the nonrelativistic energy equation. The proposed potential model reduces to Hulthen and exponential inversely quadratic potential as special cases. All numerical computations were carried out using Maple 10.0 version and Matlab 9.0 version softwares respectively.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
José D. Edelstein ◽  
Robert B. Mann ◽  
David Vázquez Rodríguez ◽  
Alejandro Vilar López

Abstract Within General Relativity, a minimally coupled scalar field governed by a quadratic potential is able to produce an accelerated expansion of the universe provided its value and excursion are larger than the Planck scale. This is an archetypical example of the so called large field inflation models. We show that by including higher curvature corrections to the gravitational action in the form of the Geometric Inflation models, it is possible to obtain accelerated expansion with a free scalar field whose values are well below the Planck scale, thereby turning a traditional large field model into a small field one. We provide the conditions the theory has to satisfy in order for this mechanism to operate, and we present two explicit models illustrating it. Finally, we present some open questions raised by this scenario in which inflation takes place completely in a higher curvature dominated regime, such as those concerning the study of perturbations.


2020 ◽  
Vol 132 (2) ◽  
pp. 20008
Author(s):  
Sergey P. Kuznetsov ◽  
Vyacheslav P. Kruglov ◽  
Alexey V. Borisov

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Paweł T. Jochym ◽  
Jan Łażewski ◽  
Wojciech Szuszkiewicz

AbstractWe present systematic ab-initio study on the phonon mode potential as a source of anharmonicity in the crystal. As an example, the transverse optical (TO) mode potential in PbTe has been fitted to density-functional-theory calculated energies of phonons excited with different amplitudes of mode displacements. The corresponding equation of motion has been analytically and numerically solved in 1D and 2D space, respectively. The solution is used for constructing the ensemble of 10,000 systems with potential and kinetic energies selected according to the thermal equilibrium distributions. The velocity auto-correlation function derived from the computed trajectories is then used to calculate the profile of the phonon spectrum for the TO an LA modes at three temperatures of 100, 300, and 600 K. This technique allows for determination of the contribution of non-quadratic potential of the phonon mode to the anharmonicity in the crystal and its effect on the phonon spectrum.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ekwevugbe Omugbe ◽  
Omosede E. Osafile ◽  
Michael C. Onyeaju

In this paper, we demonstrated that the multiple turning point problems within the framework of the Wentzel-Kramers-Brillouin (WKB) approximation method can be reduced to two turning point one for a nonsymmetric potential function by using an appropriate Pekeris-type approximation scheme. We solved the Schrödinger equation with the Killingbeck potential plus an inversely quadratic potential (KPIQP) function. The special cases of the modeled potential are discussed. We obtained the energy eigenvalues and the mass spectra of the heavy QQ¯ and heavy-light Qq¯ mesons systems. The results in this present work are in good agreement with the results obtained by other analytical methods and available experimental data in the literature.


Sign in / Sign up

Export Citation Format

Share Document