Comparison of two model reduction approaches of an industrial drying process

2021 ◽  
Vol 69 (8) ◽  
pp. 667-682
Author(s):  
Marc Oliver Berner ◽  
Martin Mönnigmann

Abstract Dynamic models have proven to be helpful for determining the residual water content in combustible biomass. However, these models often require partial differential equations, which render simulations impracticable when several thousand particles need to be considered, such as in the drying of wood chips. Reduced-order models help to overcome this problem. We compare proper orthogonal decomposition (POD) based to balanced truncation based reduced-order models. Both reduced models are lean enough for an application to systems with many particles, but the model based on balanced truncation shows more accurate results.

2017 ◽  
Vol 321 ◽  
pp. 18-34 ◽  
Author(s):  
Sohail R. Reddy ◽  
Brian A. Freno ◽  
Paul G.A. Cizmas ◽  
Seckin Gokaltun ◽  
Dwayne McDaniel ◽  
...  

2019 ◽  
Vol 872 ◽  
pp. 963-994 ◽  
Author(s):  
Hugo F. S. Lui ◽  
William R. Wolf

We present a numerical methodology for construction of reduced-order models (ROMs) of fluid flows through the combination of flow modal decomposition and regression analysis. Spectral proper orthogonal decomposition is applied to reduce the dimensionality of the model and, at the same time, filter the proper orthogonal decomposition temporal modes. The regression step is performed by a deep feedforward neural network (DNN), and the current framework is implemented in a context similar to the sparse identification of nonlinear dynamics algorithm. A discussion on the optimization of the DNN hyperparameters is provided for obtaining the best ROMs and an assessment of these models is presented for a canonical nonlinear oscillator and the compressible flow past a cylinder. Then the method is tested on the reconstruction of a turbulent flow computed by a large eddy simulation of a plunging airfoil under dynamic stall. The reduced-order model is able to capture the dynamics of the leading edge stall vortex and the subsequent trailing edge vortex. For the cases analysed, the numerical framework allows the prediction of the flow field beyond the training window using larger time increments than those employed by the full-order model. We also demonstrate the robustness of the current ROMs constructed via DNNs through a comparison with sparse regression. The DNN approach is able to learn transient features of the flow and presents more accurate and stable long-term predictions compared to sparse regression.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Mei Gao ◽  
Xiao-Qun Cao ◽  
Bai-Nian Liu ◽  
Zi-Hang Han ◽  
Shi-Cheng Hou ◽  
...  

In this paper, a frequently employed technique named the sparsity-promoting dynamic mode decomposition (SPDMD) is proposed to analyze the velocity fields of atmospheric motion. The dynamic mode decomposition method (DMD) is an effective technique to extract dynamic information from flow fields that is generated from direct experiment measurements or numerical simulation and has been broadly employed to study the dynamics of the flow, to achieve a reduced-order model (ROM) of the complex high dimensional flow field, and even to predict the evolution of the flow in a short time in the future. However, for standard DMD, it is hard to determine which modes are the most physically relevant, unlike the proper orthogonal decomposition (POD) method which ranks the decomposed modes according to their energy content. The advanced modal decomposition method SPDMD is a variant of the standard DMD, which is capable of determining the modes that can be used to achieve a high-quality approximation of the given field. It is novel to introduce the SPDMD to analyze the atmospheric flow field. In this study, SPDMD is applied to extract essential dynamic information from the 200 hPa jet flow, and the decomposed results are compared with the POD method. To further demonstrate the extraction effect of POD/SPDMD methods on the 200 hPa jet flow characteristics, the POD/SPDMD reduced-order models are constructed, respectively. The results show that both modal decomposition methods successfully extract the underlying coherent structures from the 200 hPa jet flow. And the DMD method provides additional information on the modal properties, such as temporal frequency and growth rate of each mode which can be used to identify the stability of the modes. It is also found that a fewer order of modes determined by the SPDMD method can capture nearly the same dynamic information of the jet flow as the POD method. Furthermore, from the quantitative comparisons between the POD and SPDMD reduced-order models, the latter provides a higher precision than the former, especially when the number of modes is small.


Author(s):  
Bogdan I. Epureanu ◽  
Earl H. Dowell ◽  
Kenneth C. Hall

An unsteady inviscid flow through a cascade of oscillating airfoils is investigated. An inviscid nonlinear subsonic and transonic model is used to compute the steady flow solution. Then a small amplitude motion of the airfoils about their steady flow configuration is considered. The unsteady flow is linearized about the nonlinear steady response based on the observation that in many practical cases the unsteadiness in the flow has a substantially smaller magnitude than the steady component. Several reduced order modal models are constructed in the frequency domain using the proper orthogonal decomposition technique. The dependency of the required number of aerodynamic modes in a reduced order model on the far-field upstream Mach number is investigated. It is shown that the transonic reduced order models require a larger number of modes than the subsonic models for a similar geometry, range of reduced frequencies and interblade phase angles. The increased number of modes may be due to the increased Mach number per se, or the presence of the strong spatial gradients in the region of the shock. These two possible causes are investigated. Also, the geometry of the cascade is shown to influence strongly the shape of the aerodynamic modes, but only weakly the required dimension of the reduced order models.


1999 ◽  
Author(s):  
Bogdan I. Epureanu ◽  
Earl H. Dowell ◽  
Kenneth C. Hall

Abstract The proper orthogonal decomposition technique is applied in the frequency domain to obtain reduced order models (ROM) of the flow in a cascade of airfoils. The flow is described by a inviscid-viscous interaction model where the inviscid part is described by the full potential equation and the viscous part is described by an integral boundary layer model. The fully nonlinear steady flow is computed and the unsteady flow is linearized about the steady solution. A frequency domain model is constructed and validated showing to provide similar results when compared with previous computational and experimental data presented in the literature. A cascade of airfoils forming a slightly modified Tenth Standard Configuration is numerically investigated. We show that the ROMs with only 10 to 40 degrees of freedom predict accurately the unsteady response of the full system with approximately 10,000 degrees of freedom for the subsonic case. We also show that the ROMs with 15 to 75 degrees of freedom predict accurately the unsteady response of the full system with approximately 17, 500 degrees of freedom for the transonic case. The ROMs are shown to be accurate both for a broad range of reduced frequencies and a full spectrum of interblade phase angles.


Sign in / Sign up

Export Citation Format

Share Document