scholarly journals Functional A Posteriori Error Control for Conforming Mixed Approximations of Coercive Problems with Lower Order Terms

2016 ◽  
Vol 16 (4) ◽  
pp. 609-631 ◽  
Author(s):  
Immanuel Anjam ◽  
Dirk Pauly

AbstractThe results of this contribution are derived in the framework of functional type a posteriori error estimates. The error is measured in a combined norm which takes into account both the primal and dual variables denoted by x and y, respectively. Our first main result is an error equality for all equations of the class ${\mathrm{A}^{*}\mathrm{A}x+x=f}$ or in mixed formulation ${\mathrm{A}^{*}y+x=f}$, ${\mathrm{A}x=y}$, where the exact solution $(x,y)$ is in $D(\mathrm{A})\times D(\mathrm{A}^{*})$. Here ${\mathrm{A}}$ is a linear, densely defined and closed (usually a differential) operator and ${\mathrm{A}^{*}}$ its adjoint. In this paper we deal with very conforming mixed approximations, i.e., we assume that the approximation ${(\tilde{x},\tilde{y})}$ belongs to ${D(\mathrm{A})\times D(\mathrm{A}^{*})}$. In order to obtain the exact global error value of this approximation one only needs the problem data and the mixed approximation itself, i.e., we have the equality$\lvert x-\tilde{x}\rvert^{2}+\lvert\mathrm{A}(x-\tilde{x})\rvert^{2}+\lvert y-% \tilde{y}\rvert^{2}+\lvert\mathrm{A}^{*}(y-\tilde{y})\rvert^{2}=\mathcal{M}(% \tilde{x},\tilde{y}),$where ${\mathcal{M}(\tilde{x},\tilde{y}):=\lvert f-\tilde{x}-\mathrm{A}^{*}\tilde{y}% \rvert^{2}+\lvert\tilde{y}-\mathrm{A}\tilde{x}\rvert^{2}}$ contains only known data. Our second main result is an error estimate for all equations of the class ${\mathrm{A}^{*}\mathrm{A}x+ix=f}$ or in mixed formulation ${\mathrm{A}^{*}y+ix=f}$, ${\mathrm{A}x=y}$, where i is the imaginary unit. For this problem we have the two-sided estimate$\frac{\sqrt{2}}{\sqrt{2}+1}\mathcal{M}_{i}(\tilde{x},\tilde{y})\leq\lvert x-% \tilde{x}\rvert^{2}+\lvert\mathrm{A}(x-\tilde{x})\rvert^{2}+\lvert y-\tilde{y}% \rvert^{2}+\lvert\mathrm{A}^{*}(y-\tilde{y})\rvert^{2}\leq\frac{\sqrt{2}}{% \sqrt{2}-1}\mathcal{M}_{i}(\tilde{x},\tilde{y}),$where ${\mathcal{M}_{i}(\tilde{x},\tilde{y}):=\lvert f-i\tilde{x}-\mathrm{A}^{*}% \tilde{y}\rvert^{2}+\lvert\tilde{y}-\mathrm{A}\tilde{x}\rvert^{2}}$ contains only known data. We will point out a motivation for the study of the latter problems by time discretizations or time-harmonic ansatz of linear partial differential equations and we will present an extensive list of applications including the reaction-diffusion problem and the eddy current problem.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Brehmit Kaur ◽  
Vivek Sangwan

The motive of the present work is to propose an adaptive numerical technique for singularly perturbed convection-diffusion problem in two dimensions. It has been observed that for small singular perturbation parameter, the problem under consideration displays sharp interior or boundary layers in the solution which cannot be captured by standard numerical techniques. In the present work, Hughes stabilization strategy along with the streamline upwind/Petrov-Galerkin (SUPG) method has been proposed to capture these boundary layers. Reliable a posteriori error estimates in energy norm on anisotropic meshes have been developed for the proposed scheme. But these estimates prove to be dependent on the singular perturbation parameter. Therefore, to overcome the difficulty of oscillations in the solution, an efficient adaptive mesh refinement algorithm has been proposed. Numerical experiments have been performed to test the efficiency of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document