scholarly journals Riesz means on homogeneous trees

2021 ◽  
Vol 8 (1) ◽  
pp. 60-65
Author(s):  
Effie Papageorgiou

Abstract Let 𝕋 be a homogeneous tree. We prove that if f ∈ Lp (𝕋), 1 ≤ p ≤ 2, then the Riesz means Sz R (f) converge to f everywhere as R → ∞, whenever Re z > 0.

2021 ◽  
Vol 27 (5) ◽  
Author(s):  
Francesca Bartolucci ◽  
Filippo De Mari ◽  
Matteo Monti

AbstractFollowing previous work in the continuous setup, we construct the unitarization of the horocyclic Radon transform on a homogeneous tree X and we show that it intertwines the quasi regular representations of the group of isometries of X on the tree itself and on the space of horocycles.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sumit Kumar Rano

Abstract Let 𝔛 {\mathfrak{X}} be a homogeneous tree and let ℒ {\mathcal{L}} be the Laplace operator on 𝔛 {\mathfrak{X}} . In this paper, we address problems of the following form: Suppose that { f k } k ∈ ℤ {\{f_{k}\}_{k\in\mathbb{Z}}} is a doubly infinite sequence of functions in 𝔛 {\mathfrak{X}} such that for all k ∈ ℤ {k\in\mathbb{Z}} one has ℒ ⁢ f k = A ⁢ f k + 1 {\mathcal{L}f_{k}=Af_{k+1}} and ∥ f k ∥ ≤ M {\lVert f_{k}\rVert\leq M} for some constants A ∈ ℂ {A\in\mathbb{C}} , M > 0 {M>0} and a suitable norm ∥ ⋅ ∥ {\lVert\,\cdot\,\rVert} . From this hypothesis, we try to infer that f 0 {f_{0}} , and hence every f k {f_{k}} , is an eigenfunction of ℒ {\mathcal{L}} . Moreover, we express f 0 {f_{0}} as the Poisson transform of functions defined on the boundary of 𝔛 {\mathfrak{X}} .


2010 ◽  
Vol 21 (10) ◽  
pp. 1337-1382 ◽  
Author(s):  
U. HAAGERUP ◽  
T. STEENSTRUP ◽  
R. SZWARC

Let X be a homogeneous tree of degree q + 1 (2 ≤ q ≤ ∞) and let ψ : X × X → ℂ be a function for which ψ(x, y) only depends on the distance between x, y ∈ X. Our main result gives a necessary and sufficient condition for such a function to be a Schur multiplier on X × X. Moreover, we find a closed expression for the Schur norm ||ψ||S of ψ. As applications, we obtaina closed expression for the completely bounded Fourier multiplier norm ||⋅||M0A(G) of the radial functions on the free (non-abelian) group 𝔽N on N generators (2 ≤ N ≤ ∞) and of the spherical functions on the q-adic group PGL2(ℚq) for every prime number q.


Author(s):  
Alberto G. Setti

AbstractLet be a homogeneous tree of degree at least three. In this paper we investigate for which values of p and r the (σθ)-Poisson semigroup is Lp – Lr,-bounded, and we sharp estimate for the corresponding operator norms.


1999 ◽  
Vol 59 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Michael Cowling ◽  
Alberto G. Setti

Let be a homogeneous tree, o be a fixed reference point in , and be the closed ball of radius N in centred at o. In this paper we characterise the image under the Helgason–Fourier transformation ℋ of , the space of functions supported in , and of , the space of rapidly decreasing functions on . In both cases our results are counterparts of known results for the Helgason–Fourier transformation on noncompact symmetric spaces.


2012 ◽  
Vol 21 (3) ◽  
pp. 374-411 ◽  
Author(s):  
PANDELIS DODOS ◽  
VASSILIS KANELLOPOULOS ◽  
KONSTANTINOS TYROS

A tree T is said to be homogeneous if it is uniquely rooted and there exists an integer b ≥ 2, called the branching number of T, such that every t ∈ T has exactly b immediate successors. We study the behaviour of measurable events in probability spaces indexed by homogeneous trees.Precisely, we show that for every integer b ≥ 2 and every integer n ≥ 1 there exists an integer q(b,n) with the following property. If T is a homogeneous tree with branching number b and {At:t ∈ T} is a family of measurable events in a probability space (Ω,Σ,μ) satisfying μ(At)≥ϵ>0 for every t ∈ T, then for every 0<θ<ϵ there exists a strong subtree S of T of infinite height, such that for every finite subset F of S of cardinality n ≥ 1 we have In fact, we can take q(b,n)= ((2b−1)2n−1−1)·(2b−2)−1. A finite version of this result is also obtained.


Author(s):  
Anna Maria Mantero ◽  
Anna Zappa

AbstractLet G be a group acting faithfully on a homogeneous tree of order p + 1, p > 1. Let be the space of functions on the Poission boundary ω, of zero mean on ω. When p is a prime. G is a discrete subgroup of PGL2(Qp) of finite covolume. The representations of the special series of PGL2(Qp), Which are irreducible and unitary in an appropriate completion of , are shown to be reducible when restricted to G. It is proved that these representations of G are algebraically reducible on and topologically irreducible on endowed with the week topology.


2007 ◽  
Vol 187 ◽  
pp. 75-90
Author(s):  
Kanji Ichihara

AbstractDonsker-Varadhan’s type large deviation will be discussed for the pinned motion of a radial random walk on a homogeneous tree. We shall prove that the rate function corresponding to the large deviation is associated with a new Markov chain constructed from the above random walk through a harmonic transform based on a positive principal eigenfunction for the generator of the random walk.


2013 ◽  
Vol 39 (1) ◽  
pp. 29-44
Author(s):  
T. S. Chikina
Keyword(s):  

2017 ◽  
Vol 819 ◽  
pp. 012018
Author(s):  
Ahmad Fadly Nurullah bin Rasedee ◽  
Abdumalik A. Rakhimov ◽  
Anvarjon A. Ahmedov ◽  
Torla Bin Hj Hassan

Sign in / Sign up

Export Citation Format

Share Document