On sums of squares in local rings

Author(s):  
C. Scheiderer
Keyword(s):  
2009 ◽  
Vol 266 (1) ◽  
pp. 21-42 ◽  
Author(s):  
Claus Scheiderer

Author(s):  
José F. Fernando

AbstractA classical problem in real geometry concerns the representation of positive semidefinite elements of a ring A as sums of squares of elements of A. If A is an excellent ring of dimension $$\ge 3$$ ≥ 3 , it is already known that it contains positive semidefinite elements that cannot be represented as sums of squares in A. The one dimensional local case has been afforded by Scheiderer (mainly when its residue field is real closed). In this work we focus on the 2-dimensional case and determine (under some mild conditions) which local excellent henselian rings A of embedding dimension 3 have the property that every positive semidefinite element of A is a sum of squares of elements of A.


2009 ◽  
Vol 266 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Claus Scheiderer

2021 ◽  
Vol 107 ◽  
pp. 67-105
Author(s):  
Elisabeth Gaar ◽  
Daniel Krenn ◽  
Susan Margulies ◽  
Angelika Wiegele

2021 ◽  
Vol 25 (4) ◽  
pp. 3355-3356
Author(s):  
T. Asir ◽  
K. Mano ◽  
T. Tamizh Chelvam
Keyword(s):  

Author(s):  
Mareike Dressler ◽  
Adam Kurpisz ◽  
Timo de Wolff

AbstractVarious key problems from theoretical computer science can be expressed as polynomial optimization problems over the boolean hypercube. One particularly successful way to prove complexity bounds for these types of problems is based on sums of squares (SOS) as nonnegativity certificates. In this article, we initiate optimization problems over the boolean hypercube via a recent, alternative certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for SOS-based certificates remain valid: First, for polynomials, which are nonnegative over the n-variate boolean hypercube with constraints of degree d there exists a SONC certificate of degree at most $$n+d$$ n + d . Second, if there exists a degree d SONC certificate for nonnegativity of a polynomial over the boolean hypercube, then there also exists a short degree d SONC certificate that includes at most $$n^{O(d)}$$ n O ( d ) nonnegative circuit polynomials. Moreover, we prove that, in opposite to SOS, the SONC cone is not closed under taking affine transformation of variables and that for SONC there does not exist an equivalent to Putinar’s Positivstellensatz for SOS. We discuss these results from both the algebraic and the optimization perspective.


1981 ◽  
Vol 146 (0) ◽  
pp. 201-208 ◽  
Author(s):  
Tomas Larfeldt ◽  
Christer Lech
Keyword(s):  

2018 ◽  
Vol 10 (3) ◽  
pp. 327-337
Author(s):  
Dipankar Ghosh ◽  
Anjan Gupta ◽  
Tony J. Puthenpurakal

Sign in / Sign up

Export Citation Format

Share Document