scholarly journals Abelian varieties with group action

Author(s):  
H. Lange ◽  
S. Recillas
Author(s):  
Paola Frediani ◽  
Gian Paolo Grosselli

We study Shimura curves of PEL type in the space of polarized abelian varieties [Formula: see text] generically contained in the ramified Prym locus. We generalize to ramified double covers, the construction done in [E. Colombo, P. Frediani, A. Ghigi and M. Penegini, Shimura curves in the Prym locus, Commun. Contemp. Math. 21(2) (2019) 1850009] in the unramified case and in the case of two ramification points. Namely, we construct families of double covers which are compatible with a fixed group action on the base curve. We only consider the case of one-dimensional families and where the quotient of the base curve by the group is [Formula: see text]. Using computer algebra we obtain 184 Shimura curves contained in the (ramified) Prym loci.


2018 ◽  
Vol 112 (4) ◽  
pp. 447-448
Author(s):  
Angel Carocca ◽  
Herbert Lange ◽  
Rubí E. Rodríguez

2019 ◽  
Vol 112 (6) ◽  
pp. 615-622
Author(s):  
Angel Carocca ◽  
Herbert Lange ◽  
Rubí E. Rodríguez

Author(s):  
Gian Paolo Grosselli ◽  
Abolfazl Mohajer

AbstractWe study Shimura (special) subvarieties in the moduli space $$A_{p,D}$$ A p , D of complex abelian varieties of dimension p and polarization type D. These subvarieties arise from families of covers compatible with a fixed group action on the base curve such that the quotient of the base curve by the group is isomorphic to $${{\mathbb {P}}}^1$$ P 1 . We give a criterion for the image of these families under the Prym map to be a special subvariety and, using computer algebra, obtain 210 Shimura subvarieties contained in the Prym locus.


Author(s):  
H. P. F. Swinnerton-Dyer

2019 ◽  
Vol 42 (3) ◽  
pp. 476-495
Author(s):  
Ryota Hirakawa

Cryptography ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 20 ◽  
Author(s):  
Donghoe Heo ◽  
Suhri Kim ◽  
Kisoon Yoon ◽  
Young-Ho Park ◽  
Seokhie Hong

The implementation of isogeny-based cryptography mainly use Montgomery curves, as they offer fast elliptic curve arithmetic and isogeny computation. However, although Montgomery curves have efficient 3- and 4-isogeny formula, it becomes inefficient when recovering the coefficient of the image curve for large degree isogenies. Because the Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) requires odd-degree isogenies up to at least 587, this inefficiency is the main bottleneck of using a Montgomery curve for CSIDH. In this paper, we present a new optimization method for faster CSIDH protocols entirely on Montgomery curves. To this end, we present a new parameter for CSIDH, in which the three rational two-torsion points exist. By using the proposed parameters, the CSIDH moves around the surface. The curve coefficient of the image curve can be recovered by a two-torsion point. We also proved that the CSIDH while using the proposed parameter guarantees a free and transitive group action. Additionally, we present the implementation result using our method. We demonstrated that our method is 6.4% faster than the original CSIDH. Our works show that quite higher performance of CSIDH is achieved while only using Montgomery curves.


2019 ◽  
Vol 31 (1) ◽  
pp. 265-273
Author(s):  
Fabio Podestà ◽  
Alberto Raffero

Abstract We prove that the automorphism group of a compact 6-manifold M endowed with a symplectic half-flat {\mathrm{SU}(3)} -structure has Abelian Lie algebra with dimension bounded by {\min\{5,b_{1}(M)\}} . Moreover, we study the properties of the automorphism group action and we discuss relevant examples. In particular, we provide new complete examples on {T\mathbb{S}^{3}} which are invariant under a cohomogeneity one action of {\mathrm{SO}(4)} .


1993 ◽  
Vol 45 (2) ◽  
pp. 159-189
Author(s):  
Masa-Hiko Saitō
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document