Limit theorems for bounded branching processes

2018 ◽  
Vol 28 (5) ◽  
pp. 285-292
Author(s):  
Gleb K. Kobanenko

Abstract The conditions under which the nonextincting trajectories of a discrete time bounded branching process with probability 1: either only finitely many times hit the upper boundary, either infinitely often hit the upper boundary, or coincide with the upper boundary after some random moment

2018 ◽  
Vol 28 (2) ◽  
pp. 119-130 ◽  
Author(s):  
Vladimir A. Vatutin ◽  
Elena E. Dyakonova

Abstract A two-type critical decomposable branching process with discrete time is considered in which particles of the first type may produce at the death moment offspring of both types while particles of the second type may produce at the death moment offspring of their own type only. Assuming that the offspring distributions of particles of both types may have infinite variance, the asymptotic behavior of the tail distribution of the random variable Ξ2, the total number of the second type particles ever born in the process is found. Limit theorems are proved describing (as N → ∞) the conditional distribution of the amount of the first type particles in different generations given that either Ξ2 = N or Ξ2 > N.


2005 ◽  
Vol 42 (04) ◽  
pp. 1095-1108 ◽  
Author(s):  
Penka Mayster

We introduce the idea of controlling branching processes by means of another branching process, using the fractional thinning operator of Steutel and van Harn. This idea is then adapted to the model of alternating branching, where two Markov branching processes act alternately at random observation and treatment times. We study the extinction probability and limit theorems for reproduction by n cycles, as n → ∞.


2014 ◽  
Vol 24 (5) ◽  
Author(s):  
Valeriy I. Afanasyev

AbstractThe paper is concerned with subcritical branching process in random environment. It is assumed that the moment-generating function of steps of the associated random walk is equal to 1 for some positive value of the argument. Functional limit theorems for sizes of various generations and passage times to various levels are put forward.


1973 ◽  
Vol 10 (02) ◽  
pp. 299-306 ◽  
Author(s):  
J. R. Leslie

Analogues of the central limit theorem and iterated logarithm law have recently been obtained for the Galton-Watson process; similar results are established in this paper for the temporally homogeneous Markov branching process and for the associated increasing process consisting of the number of splits in the original process up to time t.


1984 ◽  
Vol 16 (01) ◽  
pp. 56-69 ◽  
Author(s):  
John L. Spouge

The polydisperse coagulation equation models irreversible aggregation of particles with varying masses. This paper uses a one-parameter family of discrete-time continuous multitype branching processes to solve the polydisperse coagulation equation when The critical time tc when diverges corresponds to a critical branching process, while post-critical times t> tc correspond to supercritical branching processes.


1973 ◽  
Vol 5 (1) ◽  
pp. 37-54 ◽  
Author(s):  
Norman Kaplan

A population model is constructed which combines the ideas of a discrete time branching process with random environments and a continuous time non-homogeneous Markov branching process. The extinction problem is considered and necessary and sufficient conditions for extinction are determined. Also discussed are limit theorems for what corresponds to the supercritical case.


1977 ◽  
Vol 14 (3) ◽  
pp. 451-463 ◽  
Author(s):  
P. J. Green

In this paper we generalise the so-called Yaglom conditional limit theorems to the general branching process counted by the values of a random characteristic, as suggested by Jagers (1974). Even when restricted to the special case of the usual population-size process, our results are stronger than those previously available.


2011 ◽  
Vol 43 (1) ◽  
pp. 276-300 ◽  
Author(s):  
M. Richard

We consider a branching process with Poissonian immigration where individuals have inheritable types. At rate θ, new individuals singly enter the total population and start a new population which evolves like a supercritical, homogeneous, binary Crump-Mode-Jagers process: individuals have independent and identically distributed lifetime durations (nonnecessarily exponential) during which they give birth independently at a constant rateb. First, using spine decomposition, we relax previously known assumptions required for almost-sure convergence of the total population size. Then, we consider three models of structured populations: either all immigrants have a different type, or types are drawn in a discrete spectrum or in a continuous spectrum. In each model, the vector (P1,P2,…) of relative abundances of surviving families converges almost surely. In the first model, the limit is the GEM distribution with parameter θ /b.


2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Vladimir Vatutin ◽  
Andreas Kyprianou

International audience Let $Z_n,n=0,1,\ldots,$ be a branching process evolving in the random environment generated by a sequence of iid generating functions $f_0(s),f_1(s),\ldots,$ and let $S_0=0$, $S_k=X_1+ \ldots +X_k,k \geq 1$, be the associated random walk with $X_i=\log f_{i-1}^{\prime}(1), \tau (m,n)$ be the left-most point of minimum of $\{S_k,k \geq 0 \}$ on the interval $[m,n]$, and $T=\min \{ k:Z_k=0\}$. Assuming that the associated random walk satisfies the Doney condition $P(S_n > 0) \to \rho \in (0,1), n \to \infty$, we prove (under the quenched approach) conditional limit theorems, as $n \to \infty$, for the distribution of $Z_{nt}, Z_{\tau (0,nt)}$, and $Z_{\tau (nt,n)}, t \in (0,1)$, given $T=n$. It is shown that the form of the limit distributions essentially depends on the location of $\tau (0,n)$ with respect to the point $nt$.


Sign in / Sign up

Export Citation Format

Share Document