scholarly journals Completely monotone multinomial mittag-leffler type functions and diffusion equations with multiple time-derivatives

2021 ◽  
Vol 24 (1) ◽  
pp. 88-111
Author(s):  
Emilia Bazhlekova

Abstract The multinomial Mittag-Leffler function plays a crucial role in the study of multi-term time-fractional evolution equations. In this work we establish basic properties of the Prabhakar type generalization of this function with the main emphasis on complete monotonicity. As particular examples, the relaxation functions for equations with multiple time-derivatives in the so-called “natural” and “modified” forms are studied in detail and useful estimates are derived. The obtained results extend known properties of the classical Mittag-Leffler function. The main tools used in this work are Laplace transform and Bernstein functions’ technique.

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 477
Author(s):  
Katarzyna Górska ◽  
Andrzej Horzela

In this paper, we show that spectral functions relevant for commonly used models of the non-Debye relaxation are related to the Stieltjes functions supported on the positive semi-axis. Using only this property, it can be shown that the response and relaxation functions are non-negative. They are connected to each other and obey the time evolution provided by integral equations involving the memory function M(t), which is the Stieltjes function as well. This fact is also due to the Stieltjes character of the spectral function. Stochastic processes-based approach to the relaxation phenomena gives the possibility to identify the memory function M(t) with the Laplace (Lévy) exponent of some infinitely divisible stochastic processes and to introduce its partner memory k(t). Both memories are related by the Sonine equation and lead to equivalent evolution equations which may be freely interchanged in dependence of our knowledge on memories governing the process.


2020 ◽  
Vol 23 (6) ◽  
pp. 1663-1677
Author(s):  
Michael Ruzhansky ◽  
Berikbol T. Torebek

Abstract The paper is devoted to study multidimensional van der Corput-type estimates for the intergrals involving Mittag-Leffler functions. The generalisation is that we replace the exponential function with the Mittag-Leffler-type function, to study multidimensional oscillatory integrals appearing in the analysis of time-fractional evolution equations. More specifically, we study two types of integrals with functions E α, β (i λ ϕ(x)), x ∈ ℝ N and E α, β (i α λ ϕ(x)), x ∈ ℝ N for the various range of α and β. Several generalisations of the van der Corput-type estimates are proved. As an application of the above results, the Cauchy problem for the multidimensional time-fractional Klein-Gordon and time-fractional Schrödinger equations are considered.


2021 ◽  
Vol 60 (4) ◽  
pp. 3741-3749
Author(s):  
Pallavi Bedi ◽  
Anoop Kumar ◽  
Thabet Abdeljawad ◽  
Aziz Khan

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Haide Gou ◽  
Yongxiang Li

AbstractIn this article, we study the controllability for impulsive fractional integro-differential evolution equation in a Banach space. The discussions are based on the Mönch fixed point theorem as well as the theory of fractional calculus and the $(\alpha ,\beta )$ ( α , β ) -resolvent operator, we concern with the term $u'(\cdot )$ u ′ ( ⋅ ) and finding a control v such that the mild solution satisfies $u(b)=u_{b}$ u ( b ) = u b and $u'(b)=u'_{b}$ u ′ ( b ) = u b ′ . Finally, we present an application to support the validity study.


Sign in / Sign up

Export Citation Format

Share Document