Multidimensional van der Corput-Type estimates involving Mittag-Leffler functions
Abstract The paper is devoted to study multidimensional van der Corput-type estimates for the intergrals involving Mittag-Leffler functions. The generalisation is that we replace the exponential function with the Mittag-Leffler-type function, to study multidimensional oscillatory integrals appearing in the analysis of time-fractional evolution equations. More specifically, we study two types of integrals with functions E α, β (i λ ϕ(x)), x ∈ ℝ N and E α, β (i α λ ϕ(x)), x ∈ ℝ N for the various range of α and β. Several generalisations of the van der Corput-type estimates are proved. As an application of the above results, the Cauchy problem for the multidimensional time-fractional Klein-Gordon and time-fractional Schrödinger equations are considered.