Riesz potentials and orthogonal radon transforms on affine Grassmannians

2021 ◽  
Vol 24 (2) ◽  
pp. 376-392
Author(s):  
Boris Rubin ◽  
Yingzhan Wang

Abstract We establish intertwining relations between Riesz potentials associated with fractional powers of minus-Laplacian and orthogonal Radon transforms 𝓡 j,k of the Gonzalez-Strichartz type. The latter take functions on the Grassmannian of j-dimensional affine planes in ℝ n to functions on a similar manifold of k-dimensional planes by integration over the set of all j-planes that meet a given k-plane at a right angle. The main results include sharp existence conditions of 𝓡 j,k f on L p -functions, Fuglede type formulas connecting 𝓡 j,k with Radon-John k-plane transforms and Riesz potentials, and explicit inversion formulas for 𝓡 j,k f under the assumption that f belongs to the range of the j-plane transform. The method extends to another class of Radon transforms defined on affine Grassmannians by inclusion.

2020 ◽  
Vol 23 (4) ◽  
pp. 967-979
Author(s):  
Boris Rubin ◽  
Yingzhan Wang

AbstractWe apply Erdélyi–Kober fractional integrals to the study of Radon type transforms that take functions on the Grassmannian of j-dimensional affine planes in ℝn to functions on a similar manifold of k-dimensional planes by integration over the set of all j-planes that meet a given k-plane at a right angle. We obtain explicit inversion formulas for these transforms in the class of radial functions under minimal assumptions for all admissible dimensions. The general (not necessarily radial) case, but for j + k = n − 1, n odd, was studied by S. Helgason [8] and F. Gonzalez [4, 5] on smooth compactly supported functions.


2008 ◽  
Vol 19 (03) ◽  
pp. 245-283 ◽  
Author(s):  
E. OURNYCHEVA ◽  
B. RUBIN

We extend the Funk–Radon–Helgason inversion method of mean value operators to the Radon transform [Formula: see text] of continuous and Lpfunctions which are integrated over matrix planes in the space of real rectangular matrices. Necessary and sufficient conditions of existence of [Formula: see text] for such f and explicit inversion formulas are obtained. New higher-rank phenomena related to this setting are investigated.


2017 ◽  
Vol 28 (13) ◽  
pp. 1750093 ◽  
Author(s):  
Boris Rubin ◽  
Yingzhan Wang

We obtain new inversion formulas for the Radon transform and its dual between lines and hyperplanes in [Formula: see text]. The Radon transform in this setting is non-injective and the consideration is restricted to the so-called quasi-radial functions that are constant on symmetric clusters of lines. For the corresponding dual transform, which is injective, explicit inversion formulas are obtained both in the symmetric case and in full generality. The main tools are the Funk transform on the sphere, the Radon-John [Formula: see text]-plane transform in [Formula: see text], the Grassmannian modification of the Kelvin transform, and the Erdélyi–Kober fractional integrals.


Author(s):  
Boris Rubin

AbstractNew proofs are given to some approximate and explicit inversion formulas for the Riesz potentials. The results are applied to reconstruction of functions from their integrals over k-dimensional planes in ℝn.


2018 ◽  
Vol 11 (1) ◽  
pp. 138
Author(s):  
Zheng Fang ◽  
Jianxun He

In this paper, we consider Radon transform on the Heisenberg group $\textbf{H}^{n}$, and obtain new inversion formulas via dual Radon transforms and Poisson integrals. We prove that the Radon transform is a unitary operator from Sobelov space $W$ into $L^{2}(\textbf{H}^{n})$. Moreover, we use the Radon transform to define the Littlewood-Paley $g$-function on a hyperplane and obtain the Littlewood-Paley theory.


Filomat ◽  
2016 ◽  
Vol 30 (10) ◽  
pp. 2809-2823 ◽  
Author(s):  
Ilham Aliev ◽  
Esra Sağlık

We introduce a wavelet-type transform generated by the so-called beta-semigroup, which is a natural generalization of the Gauss-Weierstrass and Poisson semigroups associated to the Laplace-Bessel convolution. By making use of this wavelet-type transform we obtain new explicit inversion formulas for the generalized Riesz potentials and a new characterization of the generalized Riesz potential spaces. We show that the usage of the concept beta-semigroup gives rise to minimize the number of conditions on wavelet measure, no matter how big the order of the generalized Riesz potentials is.


Sign in / Sign up

Export Citation Format

Share Document