scholarly journals Relationship between visual field changes and optical coherence tomography measurements in advanced open-angle glaucoma

Folia Medica ◽  
2016 ◽  
Vol 58 (3) ◽  
pp. 174-181 ◽  
Author(s):  
Snezhina S. Kostianeva ◽  
Marieta I. Konareva-Kostianeva ◽  
Marin A. Atanassov

Abstract Aim: To assess relationships between functional changes in visual field and structural changes in advanced open-angle glaucoma (OAG) found using spectral-domain optical coherence tomography (SD-OCT). Methods: Thirty-one eyes of 25 patients with OAG were included in this study. Besides the routine ophthalmological exam the patients underwent standard automated perimetry (SAP) (Humphrey Field Analyzer) and SD-OCT (RTVue–100) performed within 6 months. The global perimetric indices in the study group were as follows: mean deviation (MD) 12.33±6.18 dB and pattern standard deviation (PSD) 9.17±3.41 dB. The relationship between OCT measurements and MD and PSD was evaluated by correlation analysis (Pearson’s correlation coefficient) and regression analysis (linear and nonlinear regression models). Results: Thickness measurements of the lower halves of ganglion cell complex (GCC) and retinal nerve fiber layer by two scanning protocols (ONH and 3.45) showed these to be thinner than the upper halves, but the difference failed to reach statistical significance. The correlations between global indices MD/PSD and most of the analysed quantitative OCT measurements were moderate (r in the range between 0.3 and 0.6). The correlation between MD and GCC showed nonlinear cubic regression (R2=0.417, P=0.004). Good correlation was found between MD and GLV (R2=0.383; P=0.008). Linear regression (P<0.05) was found only between MD and Cup area (R2=0.175, P=0.024) and between MD and RNFL by 3.45 protocol (R2=0.131, P=0.045). Conclusion: Nonlinear regressive models appear to be more appropriate in the assessment of the correlations between functional and structural changes in eyes with advanced glaucoma. The correlations we found were moderate.

2021 ◽  
Author(s):  
Yadollah Eslami ◽  
Sepideh Ghods ◽  
Massood Mohammadi ◽  
Mona Safizadeh ◽  
Ghasem Fakhraie ◽  
...  

Abstract Purpose: To evaluate the relationship between structure and function in moderate and advanced primary open-angle glaucoma (POAG) and to determine the accuracy of structure and vasculature for discriminating moderate from advanced POAG.Methods: In this cross-sectional study 25 eyes with moderate and 40 eyes with advanced POAG were enrolled. All eyes underwent measurement of the thickness of circumpapillary retinal nerve fiber layer (cpRNFL) and macular ganglion cell complex (GCC), and optical coherence tomography angiography (OCTA) of the optic nerve head (ONH) and macula. Visual field (VF) was evaluated by Swedish interactive threshold algorithm and 24-2 and 10-2 patterns. The correlation between structure and vasculature and the mean deviation (MD) of the VFs was evaluated by a partial correlation coefficient. The area under the receiver operating characteristic curve (AUC) was applied for assessing the power of variables for discrimination moderate from advanced POAG.Results: Superior cpRNFL, superior GCC, whole image vessel density (wiVD) of the ONH area, and vessel density in inferior quadrant of perifovea had the strongest correlation with the mean deviation (MD) of the VF 24-2 (r= .351, .558, .649 and .397; p< .05). The greatest AUCs belonged to inferior cpRNFL (.789), superior GCC (.818), vessel density of the inferior hemifield of ONH area (.886), and vessel density in inferior quadrant of perifovea (.833) without statistically significant difference in pairwise comparison.Conclusion: Vasculature has a stronger correlation than the structure with MD in moderate and advanced POAG and is as accurate as structure in discrimination moderate from advanced POAG.


2021 ◽  
pp. 26-31
Author(s):  
N.I. Kurysheva ◽  
◽  
A.D. Nikitina ◽  

Purpose. To study the role of optical coherence tomography (OCT) and OCT angiography (OCTA) in the detection of the primary glaucoma progression. Material and methods. The prospective study of 128 patients with primary glaucoma (128 eyes), conducted from 2015 to 2019, included at least 6 standard automated perimetry (SAP) and spectral-domain OCT (SD-OCT) examinations in each patient; OCTA was also used during the last year of observation. To determine the disease progression, the trend and event analysis using the Humphrey Field Analyzer was performed. The fact and rate of thinning of the retinal nerve fiber layer (RNFL) and its ganglion cell complex (GCC) were evaluated. If they had a trend of significant (p < 0.05) thinning, the eye was classified as having the SD-OCT progression. The values of corneal-compensated IOP were also considered: minimal (IOPmin) and peak (IOPmax). Results. Glaucoma progression was detected in 79 eyes. The isolated use of SAP allows detecting the progression only in 2.3% cases, SD-OCT - in 37.5%, among them the isolated assessment of GCC amounted to 7.8%, and RNFL – to 5.5%. The complex dynamic morphological and functional assessment increased the possibility of progression detection up to 61.7%. Progression was related to the stage of glaucoma damage at the moment of diagnosis: for the perimetry index PSD p=0.025, for the focal loss volume of GCC p=0.024, as well as with the level of minimal IOP (p=0.04). All patients with progression have shown the vessel density decrease in the peripapillary retina and parafovea. Conclusion. SD-OCT plays an important role in detecting the progression of glaucoma. The complex dynamic morphological and functional assessment allows detecting the progression in over half of patients. Progression is associated with the initial stage of glaucoma and an insufficient IOP decrease during treatment, accompanied by retinal microcirculation deterioration. Key words: primary, glaucoma progression, optical coherence tomography, OCT-angiography, IOP.


2021 ◽  
Author(s):  
Sieun Lee ◽  
Morgan Heisler ◽  
Dhanashree Ratra ◽  
Vineet Ratra ◽  
Paul J Mackenzie ◽  
...  

Purpose: Investigate the effects of myopia and glaucoma in the prelaminar neural canal and anterior lamina cribrosa using 1060-nm swept-source optical coherence tomography Design: Retrospective, cross-sectional study Methods: - Setting: Clinical practice - Patient or study population: 19 controls (38 eyes); 38 glaucomatous subjects (63 eyes). Inclusion criteria for glaucomatous subjects: i) optic disc neural rim loss; ii) peripapillary nerve fibre layer (NFL) loss on spectral domain optical coherence tomography (SD-OCT); iii) glaucomatous visual field defect with an abnormal pattern standard deviation (P<.05); iv) stable SD-OCT, visual field, and optic disc clinical examination for 6 or more months. Inclusion criteria for control subjects: no evidence of retinal or optic nerve pathology. Exclusion criteria: i) retinal diseases or optic neuropathy other than primary open-angle glaucoma; ii) intraocular pressure ≤ 10 mmHg or ≥ 20 mmHg; iii) ocular media opacities; iv) any surgery-related complication deemed inappropriate for the study. - Intervention or observation procedures: Swept-source optical coherence tomography - Main Outcome Measure(s): Bruchs membrane opening (BMO) and anterior laminar insertion (ALI) dimension, prelaminar neural canal dimension, anterior lamina cribrosa surface (ALCS) depth Results: Glaucomatous eyes had more bowed and nasally rotated BMO and ALI, more horizontally skewed prelaminar neural canal, and deeper ALCS than the control eyes. Increased axial length was associated with a wider, longer, and more horizontally skewed neural canal, and decrease in the ALCS depth and curvature. Conclusion: Our findings suggest that glaucomatous posterior bowing or cupping of lamina cribrosa can be significantly confounded by the myopic expansion of the neural canal. This may be related to higher glaucoma risk associated with myopia from decreased compliance and increased susceptibility to IOP-related damage of LC being pulled taut.


2020 ◽  
Vol 9 (5) ◽  
pp. 1530
Author(s):  
Alfonso Parra-Blesa ◽  
Alfredo Sanchez-Alberca ◽  
Jose Javier Garcia-Medina

Background: Primary open-angle glaucoma (POAG) is considered one of the main causes of blindness. Detection of POAG at early stages and classification into evolutionary stages is crucial to blindness prevention. Methods: 1001 patients were enrolled, of whom 766 were healthy subjects and 235 were ocular hypertensive or glaucomatous patients in different stages of the disease. Spectral domain optical coherence tomography (SD-OCT) was used to determine Bruch’s membrane opening-minimum rim width (BMO-MRW) and the thicknesses of peripapillary retinal nerve fibre layer (RNFL) rings with diameters of 3.0, 4.1 and 4.7 mm centred on the optic nerve. The BMO-MRW rim and RNFL rings were divided into seven sectors (G-T-TS-TI-N-NS-NI). The k-means algorithm and linear discriminant analysis were used to classify patients into disease stages. Results: We defined four glaucoma stages and provided a new model for classifying eyes into these stages, with an overall accuracy greater than 92% (88% when including healthy eyes). An online application was also implemented to predict the probability of glaucoma stage for any given eye. Conclusions: We propose a new objective algorithm for classifying POAG into clinical-evolutionary stages using SD-OCT.


Sign in / Sign up

Export Citation Format

Share Document