Dense point spectrum and absolutely continuous spectrum in spherically symmetric Dirac operators

1995 ◽  
Vol 7 (7) ◽  
Author(s):  
Karl Michael Schmidt
Author(s):  
Daniel Hughes ◽  
Karl Michael Schmidt

We show that the absolutely continuous part of the spectral function of the one-dimensional Dirac operator on a half-line with a constant mass term and a real, square-integrable potential is strictly increasing throughout the essential spectrum (−∞, −1] ∪ [1, ∞). The proof is based on estimates for the transmission coefficient for the full-line scattering problem with a truncated potential and a subsequent limiting procedure for the spectral function. Furthermore, we show that the absolutely continuous spectrum persists when an angular momentum term is added, thus also establishing the result for spherically symmetric Dirac operators in higher dimensions.


2018 ◽  
Vol 29 (4) ◽  
pp. 1072-1086 ◽  
Author(s):  
Lax Chan ◽  
Uwe Grimm ◽  
Ian Short

Sign in / Sign up

Export Citation Format

Share Document