mass term
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 66)

H-INDEX

21
(FIVE YEARS 4)

Author(s):  
Sudhanwa Patra ◽  
Utkarsh Patel ◽  
Purushottam Sahu

The presence of small neutrino masses and flavour mixings can be accounted for naturally in various models about extensions of the standard model, particularly in the seesaw mechanism models. In this work, we present a minimally extended seesaw framework with two right-handed neutrinos, where the active neutrino masses are derived in the radiative regime. Using the framework it can be shown that within certain mass limits, the light neutrino mass term can approach a form that is similar to its form under type-I seesaw mechanism. Apart from this, we show that the decay width of right-handed neutrinos (produced through the decay of [Formula: see text] boson in a particle collider) is short enough to cause a sufficiently long lifetime for the particles, thus ensuring an observable displacement in the LHC between the production and decay vertices. We comment on the fact that these displaced vertex signatures thus can serve as a means to verify the existence of these right-handed neutrinos in future experiments. Lastly, we line up the possibility of our future work where the vertex signatures of particles greater than the mass of [Formula: see text] boson can be worked upon.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Naoyuki Haba ◽  
Toshifumi Yamada

Abstract We study colored Higgsino-mediated proton decay (dimension-five proton decay) in a model based on the flipped SU(5) GUT. In the model, the GUT-breaking 10, $$ \overline{\mathbf{10}} $$ 10 ¯ fields have a GUT-scale mass term and gain VEVs through higher-dimensional operators, which induces an effective mass term between the color triplets in the 5, $$ \overline{\mathbf{5}} $$ 5 ¯ Higgs fields that is not much smaller than the GUT scale. This model structure gives rise to observable dimension-five proton decay, and at the same time achieves moderate suppression on dimension-five proton decay that softens the tension with the current bound on Γ(p → K+$$ \overline{\nu} $$ ν ¯ ). We investigate the flavor dependence of the Wilson coefficients of the operators relevant to dimension-five proton decay, by relating them with diagonalized Yukawa couplings and CKM matrix components in MSSM, utilizing the fact that the GUT Yukawa couplings are in one-to-one correspondence with the MSSM Yukawa couplings in flipped models. Then we numerically evaluate the Wilson coefficients, and predict the distributions of the ratios of the partial widths of various proton decay modes.


2021 ◽  
Vol 4 (1) ◽  
pp. 1-15
Author(s):  
Halina Grushevskaya ◽  
George Krylov

Within the earlier developed high-energy-k→·p→-Hamiltonian approach to describe graphene-like materials, the simulations of band structure, non-Abelian Zak phases and the complex conductivity of graphene have been performed. The quasi-relativistic graphene model with a number of flavors (gauge fields) NF=3 in two approximations (with and without a pseudo-Majorana mass term) has been utilized as a ground for the simulations. It has been shown that Zak-phases set for the non-Abelian Majorana-like excitations (modes) in graphene represent the cyclic Z12 and this group is deformed into a smaller one Z8 at sufficiently high momenta due to a deconfinement of the modes. Simulations of complex longitudinal low-frequency conductivity have been performed with a focus on effects of spatial dispersion. A spatial periodic polarization in the graphene models with the pseudo Majorana charge carriers is offered.


Author(s):  
Zhi-zhong Xing

Abstract Requiring the effective mass term for a category of fundamental Dirac or Majorana fermions of the same electric charge to be invariant under the translational transformations $\psi^{}_{\alpha \rm L (R)} \to \psi^{}_{\alpha \rm L (R)} + n^{}_{\alpha} z^{}_{\psi \rm L(R)}$ in the flavor space, where $n^{}_\alpha$ and $z^{}_{\psi \rm L(R)}$ stand respectively for the flavor-dependent complex numbers and a constant spinor field anticommuting with the fermion fields, we show that $n^{}_\alpha$ can be identified as the elements $U^{}_{\alpha i}$ in the $i$-th column of the unitary matrix $U$ used to diagonalize the corresponding Hermitian or symmetric fermion mass matrix $M^{}_\psi$, and $m^{}_i = 0$ holds accordingly. We find that the reverse is also true. Now that the mass spectra of charged leptons, up- and down-type quarks are all strongly hierarchical and current experimental data allow the lightest neutrino to be massless, we argue that the zero mass limit for the first-family fermions and the translational flavor symmetry behind it should be a natural starting point for building viable fermion mass models.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 471
Author(s):  
Nicolas Boulanger ◽  
Fabien Buisseret ◽  
Guillaume Lhost

We first quantize an action proposed by Casalbuoni and Gomis in 2014 that describes two massless relativistic scalar particles interacting via a conformally invariant potential. The spectrum is a continuum of massive states that may be interpreted as unparticles. We then obtain in a similar way the mass operator for a deformed action in which two terms are introduced that break the conformal symmetry: a mass term and an extra position-dependent coupling constant. A simple Ansatz for the latter leads to a mass operator with linear confinement in terms of an effective string tension σ. The quantized model is confining when σ≠0 and its mass spectrum shows Regge trajectories. We propose a tensionless limit in which highly excited confined states reduce to (gapped) unparticles. Moreover, the low-lying confined bound states become massless in the latter limit as a sign of conformal symmetry restoration and the ratio between their masses and σ stays constant. The originality of our approach is that it applies to both confining and conformal phases via an effective interacting model.


2021 ◽  
Vol 2021 (12) ◽  
pp. 045
Author(s):  
Katsuki Aoki ◽  
Yusuke Manita ◽  
Shinji Mukohyama

Abstract A Poincarè invariant, local scalar field theory in which the Lagrangian and the equation of motion contain only up to second-order derivatives of the fields is called generalized Galileon. The covariant version of it in four dimensions is called Horndeski theory, and has been vigorously studied in applications to inflation and dark energy. In this paper, we study a class of multi-field extensions of the generalized Galileon theory. By imposing shift and SO(N) symmetries on all the currently known multi-Galileon terms in general dimensions, we find that the structure of the Lagrangian is uniquely determined and parameterized by a series of coupling constants. We also study tensor perturbation in the shift-symmetric SO(3) multi-Galileon theory in four dimensions. The tensor perturbations can obtain a mass term stemming from the same symmetry breaking pattern as the solid inflation. We also find that the shift-symmetric SO(3) multi-Galileon theory gives rise to new cubic interactions of the tensor modes, suggesting the existence of a new type of tensor primordial non-Gaussianity.


2021 ◽  
Author(s):  
A. Babe Cheikh ◽  
A. Bouhlal ◽  
Ahmed Jellal ◽  
E. H. Atmani

Abstract We investigate the tunneling effect of a Corbino disk in graphene in the presence of a variable magnetic flux Φi created by a solenoid piercing the inner disk under the effect of a finite mass term in the disk region (R1 < r < R2) and an electrostatic potential. Considering different regions, we explicitly determine the associated eigenspinors in terms of Hankel functions. The use of matching conditions and asymptotic behavior of Hankel functions for large arguments, enables us to calculate transmission and other transport quantities. Our results show that the energy gap suppresses the tunneling effect by creating singularity points of zero transmission corresponding to the maximum shot noise peaks quantified by the Fano factor F . The transmission as a function of the radii ratio R2/R1 becomes oscillatory with a decrease in periods and amplitudes. It can even reach one (Klein tunneling) for large values of the energy gap. The appearance of the minimal conductance at the points kF R1 = R1δ is observed. Finally we find that the electrostatic potential can control the effect of the band gap.


2021 ◽  
pp. 122354
Author(s):  
S. Ait El Korchi ◽  
S. Baid ◽  
P. Buganu ◽  
M. Chabab ◽  
A. El Batoul ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Jose Luis Blázquez-Salcedo ◽  
Fech Scen Khoo ◽  
Jutta Kunz ◽  
Vincent Preut

We study polar quasinormal modes of relativistic stars in scalar-tensor theories, where we include a massive gravitational scalar field and employ the standard Brans-Dicke coupling function. For the potential of the scalar field we consider a simple mass term as well as a potential associated with R2 gravity. The presence of the scalar field makes the spectrum of quasinormal modes much richer than the spectrum in General Relativity. We here investigate radial modes (l = 0) and quadrupole modes (l = 2). The general relativistic l = 0 normal modes turn into quasinormal modes in scalar-tensor theories, that are able to propagate outside of the stars. In addition to the pressure-led modes new scalar-led ϕ-modes arise. We analyze the dependence of the quasinormal mode frequencies and decay times on the scalar field mass.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Carlo Maccaferri ◽  
Jakub Vošmera

Abstract In this paper, which is the last of a series including [1, 2] we first verify that the two open-closed effective potentials derived in the previous paper from the WZW theory in the large Hilbert space and the A∞ theory in the small Hilbert space have the same vacuum structure. In particular, we show that mass-term deformations given by the effective (open)2-closed couplings are the same, provided the effective tadpole is vanishing to first order in the closed string deformation. We show that this condition is always realized when the worldsheet BCFT enjoys a global $$ \mathcal{N} $$ N = 2 superconformal symmetry and the deforming closed string belongs to the chiral ring in both the holomorphic and anti-holomorphic sector. In this case it is possible to explicitly evaluate the mass deformation by localizing the SFT Feynman diagrams to the boundary of world-sheet moduli space, reducing the amplitude to a simple open string two-point function. As a non-trivial check of our construction we couple a constant Kalb-Ramond closed string state to the OSFT on the D3–D(−1) system and we show that half of the bosonic blowing-up moduli become tachyonic, making the system condense to a bound state whose binding energy we compute exactly to second order in the closed string deformation, finding agreement with the literature.


Sign in / Sign up

Export Citation Format

Share Document