scholarly journals Higher differentiability results for solutions to a class of non-autonomous obstacle problems with sub-quadratic growth conditions

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Andrea Gentile

Abstract We establish some higher differentiability results of integer and fractional order for solutions to non-autonomous obstacle problems of the form min ⁡ { ∫ Ω f ⁢ ( x , D ⁢ v ⁢ ( x ) ) : v ∈ K ψ ⁢ ( Ω ) } , \min\biggl{\{}\int_{\Omega}f(x,Dv(x)):v\in\mathcal{K}_{\psi}(\Omega)\biggr{\}}, where the function 𝑓 satisfies 𝑝-growth conditions with respect to the gradient variable, for 1 < p < 2 1<p<2 , and K ψ ⁢ ( Ω ) \mathcal{K}_{\psi}(\Omega) is the class of admissible functions v ∈ u 0 + W 0 1 , p ⁢ ( Ω ) v\in u_{0}+W^{1,p}_{0}(\Omega) such that v ≥ ψ v\geq\psi a.e. in Ω, where u 0 ∈ W 1 , p ⁢ ( Ω ) u_{0}\in W^{1,p}(\Omega) is a fixed boundary datum. Here we show that a Sobolev or Besov–Lipschitz regularity assumption on the gradient of the obstacle 𝜓 transfers to the gradient of the solution, provided the partial map x ↦ D ξ ⁢ f ⁢ ( x , ξ ) x\mapsto D_{\xi}f(x,\xi) belongs to a suitable Sobolev or Besov space. The novelty here is that we deal with sub-quadratic growth conditions with respect to the gradient variable, i.e. f ⁢ ( x , ξ ) ≈ a ⁢ ( x ) ⁢ | ξ | p f(x,\xi)\approx a(x)\lvert\xi\rvert^{p} with 1 < p < 2 1<p<2 , and where the map 𝑎 belongs to a Sobolev or Besov–Lipschitz space.

2019 ◽  
Vol 31 (6) ◽  
pp. 1501-1516 ◽  
Author(s):  
Chiara Gavioli

AbstractWe establish the higher differentiability of integer order of solutions to a class of obstacle problems assuming that the gradient of the obstacle possesses an extra integer differentiability property. We deal with the case in which the solutions to the obstacle problems satisfy a variational inequality of the form\int_{\Omega}\langle\mathcal{A}(x,Du),D(\varphi-u)\rangle\,dx\geq 0\quad\text{% for all }\varphi\in\mathcal{K}_{\psi}(\Omega).The main novelty is that the operator {\mathcal{A}} satisfies the so-called {p,q}-growth conditions with p and q linked by the relation\frac{q}{p}<1+\frac{1}{n}-\frac{1}{r},for {r>n}. Here {\psi\in W^{1,p}(\Omega)} is a fixed function, called obstacle, for which we assume {D\psi\in W^{1,2q-p}_{\mathrm{loc}}(\Omega)}, and {\mathcal{K}_{\psi}=\{w\in W^{1,p}(\Omega):w\geq\psi\text{ a.e. in }\Omega\}} is the class of admissible functions. We require for the partial map {x\mapsto\mathcal{A}(x,\xi\/)} a higher differentiability of Sobolev order in the space {W^{1,r}}, with {r>n} satisfying the condition above.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Andrea Gentile

AbstractWe consider functionals of the form\mathcal{F}(v,\Omega)=\int_{\Omega}f(x,Dv(x))\,dx,with convex integrand with respect to the gradient variable, assuming that the function that measures the oscillation of the integrand with respect to the x variable belongs to a suitable Sobolev space {W^{1,q}}. We prove a higher differentiability result for the minimizers. We also infer a Lipschitz regularity result of minimizers if {q>n}, and a result of higher integrability for the gradient if {q=n}. The novelty here is that we deal with integrands satisfying subquadratic growth conditions with respect to gradient variable.


2021 ◽  
Vol 27 ◽  
pp. 19 ◽  
Author(s):  
M. Caselli ◽  
M. Eleuteri ◽  
A. Passarelli di Napoli

In this paper we prove the the local Lipschitz continuity for solutions to a class of obstacle problems of the type min{ ∫ΩF(x, Dz) : z ∈ 𝛫ψ(Ω)}. Here 𝛫ψ(Ω) is the set of admissible functions z ∈ u0 + W1,p(Ω) for a given u0 ∈ W1,p(Ω) such that z ≥ ψ a.e. in Ω, ψ being the obstacle and Ω being an open bounded set of ℝn, n ≥ 2. The main novelty here is that we are assuming that the integrand F(x, Dz) satisfies (p, q)-growth conditions and as a function of the x-variable belongs to a suitable Sobolev class. We remark that the Lipschitz continuity result is obtained under a sharp closeness condition between the growth and the ellipticity exponents. Moreover, we impose less restrictive assumptions on the obstacle with respect to the previous regularity results. Furthermore, assuming the obstacle ψ is locally bounded, we prove the local boundedness of the solutions to a quite large class of variational inequalities whose principal part satisfies non standard growth conditions.


Author(s):  
Cristiana De Filippis ◽  
Giuseppe Mingione

AbstractWe provide a general approach to Lipschitz regularity of solutions for a large class of vector-valued, nonautonomous variational problems exhibiting nonuniform ellipticity. The functionals considered here range from those with unbalanced polynomial growth conditions to those with fast, exponential type growth. The results obtained are sharp with respect to all the data considered and also yield new, optimal regularity criteria in the classical uniformly elliptic case. We give a classification of different types of nonuniform ellipticity, accordingly identifying suitable conditions to get regularity theorems.


Sign in / Sign up

Export Citation Format

Share Document