lipschitz space
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Andrea Gentile

Abstract We establish some higher differentiability results of integer and fractional order for solutions to non-autonomous obstacle problems of the form min ⁡ { ∫ Ω f ⁢ ( x , D ⁢ v ⁢ ( x ) ) : v ∈ K ψ ⁢ ( Ω ) } , \min\biggl{\{}\int_{\Omega}f(x,Dv(x)):v\in\mathcal{K}_{\psi}(\Omega)\biggr{\}}, where the function 𝑓 satisfies 𝑝-growth conditions with respect to the gradient variable, for 1 < p < 2 1<p<2 , and K ψ ⁢ ( Ω ) \mathcal{K}_{\psi}(\Omega) is the class of admissible functions v ∈ u 0 + W 0 1 , p ⁢ ( Ω ) v\in u_{0}+W^{1,p}_{0}(\Omega) such that v ≥ ψ v\geq\psi a.e. in Ω, where u 0 ∈ W 1 , p ⁢ ( Ω ) u_{0}\in W^{1,p}(\Omega) is a fixed boundary datum. Here we show that a Sobolev or Besov–Lipschitz regularity assumption on the gradient of the obstacle 𝜓 transfers to the gradient of the solution, provided the partial map x ↦ D ξ ⁢ f ⁢ ( x , ξ ) x\mapsto D_{\xi}f(x,\xi) belongs to a suitable Sobolev or Besov space. The novelty here is that we deal with sub-quadratic growth conditions with respect to the gradient variable, i.e. f ⁢ ( x , ξ ) ≈ a ⁢ ( x ) ⁢ | ξ | p f(x,\xi)\approx a(x)\lvert\xi\rvert^{p} with 1 < p < 2 1<p<2 , and where the map 𝑎 belongs to a Sobolev or Besov–Lipschitz space.


2021 ◽  
Vol 18 ◽  
pp. 133
Author(s):  
B.I. Peleshenko

Any $2\pi$-periodic function from the Lipschitz space $\Lambda_b^{\alpha}$ can be represented by way of the convolution of the functions from the Lorentz spaces $L_{p,r}$ and $L_{b,r'}$ in the case when $1 \leqslant b < \infty$, $0 < 1 - p^{-1} < \alpha < 1$ and the numbers $r$, $r'$ are picked in the corresponding way.


2020 ◽  
Vol 18 (1) ◽  
pp. 1281-1291
Author(s):  
Congbian Ma ◽  
Yanbo Ren

Abstract In this paper, an equivalent quasinorm for the Lipschitz space of noncommutative martingales is presented. As an application, we obtain the duality theorem between the noncommutative martingale Hardy space {h}_{p}^{c}( {\mathcal M} ) (resp. {h}_{p}^{r}( {\mathcal M} ) ) and the Lipschitz space {\lambda }_{\beta }^{c}( {\mathcal M} ) (resp. {\lambda }_{\beta }^{r}( {\mathcal M} ) ) for 0\lt p\lt 1 , \beta =\tfrac{1}{p}-1 . We also prove some equivalent quasinorms for {h}_{p}^{c}( {\mathcal M} ) and {h}_{p}^{r}( {\mathcal M} ) for p=1 or 2\lt p\lt \infty .


2020 ◽  
Vol 92 (1) ◽  
Author(s):  
Rubén A. Martínez-Avendaño ◽  
Emmanuel Rivera-Guasco

2019 ◽  
Vol 13 (05) ◽  
pp. 2050091
Author(s):  
Tarul Garg ◽  
Nurhayat İspir ◽  
P. N. Agrawal

This paper deals with the approximation properties of the [Formula: see text]-bivariate Bernstein–Chlodowsky operators of Durrmeyer type. We investigate the approximation degree of the [Formula: see text]-bivariate operators for continuous functions in Lipschitz space and also with the help of partial modulus of continuity. Further, the Generalized Boolean Sum (GBS) operator of these bivariate [Formula: see text]–Bernstein–Chlodowsky–Durrmeyer operators is introduced and the rate of convergence in the Bögel space of continuous functions by means of the Lipschitz class and the mixed modulus of smoothness is examined. Furthermore, the convergence and its comparisons are shown by illustrative graphics for the [Formula: see text]-bivariate operators and the associated GBS operators to certain functions using Maple algorithms.


2019 ◽  
Vol 107 (3) ◽  
pp. 381-391
Author(s):  
DINGHUAI WANG ◽  
JIANG ZHOU ◽  
ZHIDONG TENG

Let $0<\unicode[STIX]{x1D6FC}<n,1\leq p<q<\infty$ with $1/p-1/q=\unicode[STIX]{x1D6FC}/n$, $\unicode[STIX]{x1D714}\in A_{p,q}$, $\unicode[STIX]{x1D708}\in A_{\infty }$ and let $f$ be a locally integrable function. In this paper, it is proved that $f$ is in bounded mean oscillation $\mathit{BMO}$ space if and only if $$\begin{eqnarray}\sup _{B}\frac{|B|^{\unicode[STIX]{x1D6FC}/n}}{\unicode[STIX]{x1D714}^{p}(B)^{1/p}}\bigg(\int _{B}|f(x)-f_{\unicode[STIX]{x1D708},B}|^{q}\unicode[STIX]{x1D714}(x)^{q}\,dx\bigg)^{1/q}<\infty ,\end{eqnarray}$$ where $\unicode[STIX]{x1D714}^{p}(B)=\int _{B}\unicode[STIX]{x1D714}(x)^{p}\,dx$ and $f_{\unicode[STIX]{x1D708},B}=(1/\unicode[STIX]{x1D708}(B))\int _{B}f(y)\unicode[STIX]{x1D708}(y)\,dy$. We also show that $f$ belongs to Lipschitz space $Lip_{\unicode[STIX]{x1D6FC}}$ if and only if $$\begin{eqnarray}\sup _{B}\frac{1}{\unicode[STIX]{x1D714}^{p}(B)^{1/p}}\bigg(\int _{B}|f(x)-f_{\unicode[STIX]{x1D708},B}|^{q}\unicode[STIX]{x1D714}(x)^{q}\,dx\bigg)^{1/q}<\infty .\end{eqnarray}$$ As applications, we characterize these spaces by the boundedness of commutators of some operators on weighted Lebesgue spaces.


2019 ◽  
Vol 71 (03) ◽  
pp. 607-627 ◽  
Author(s):  
Yanchang Han ◽  
Yongsheng Han ◽  
Ji Li ◽  
Chaoqiang Tan

AbstractThe Marcinkiewicz multipliers are $L^{p}$ bounded for $1<p<\infty$ on the Heisenberg group $\mathbb{H}^{n}\simeq \mathbb{C}^{n}\times \mathbb{R}$ (Müller, Ricci, and Stein). This is surprising in the sense that these multipliers are invariant under a two parameter group of dilations on $\mathbb{C}^{n}\times \mathbb{R}$ , while there is no two parameter group of automorphic dilations on $\mathbb{H}^{n}$ . The purpose of this paper is to establish a theory of the flag Lipschitz space on the Heisenberg group $\mathbb{H}^{n}\simeq \mathbb{C}^{n}\times \mathbb{R}$ that is, in a sense, intermediate between that of the classical Lipschitz space on the Heisenberg group $\mathbb{H}^{n}$ and the product Lipschitz space on $\mathbb{C}^{n}\times \mathbb{R}$ . We characterize this flag Lipschitz space via the Littlewood–Paley theory and prove that flag singular integral operators, which include the Marcinkiewicz multipliers, are bounded on these flag Lipschitz spaces.


Sign in / Sign up

Export Citation Format

Share Document