The higher differentiability of solutions to variational problems of quadratic growth

2020 ◽  
Vol 268 (2) ◽  
pp. 813-824
Author(s):  
Arrigo Cellina
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Andrea Gentile

Abstract We establish some higher differentiability results of integer and fractional order for solutions to non-autonomous obstacle problems of the form min ⁡ { ∫ Ω f ⁢ ( x , D ⁢ v ⁢ ( x ) ) : v ∈ K ψ ⁢ ( Ω ) } , \min\biggl{\{}\int_{\Omega}f(x,Dv(x)):v\in\mathcal{K}_{\psi}(\Omega)\biggr{\}}, where the function 𝑓 satisfies 𝑝-growth conditions with respect to the gradient variable, for 1 < p < 2 1<p<2 , and K ψ ⁢ ( Ω ) \mathcal{K}_{\psi}(\Omega) is the class of admissible functions v ∈ u 0 + W 0 1 , p ⁢ ( Ω ) v\in u_{0}+W^{1,p}_{0}(\Omega) such that v ≥ ψ v\geq\psi a.e. in Ω, where u 0 ∈ W 1 , p ⁢ ( Ω ) u_{0}\in W^{1,p}(\Omega) is a fixed boundary datum. Here we show that a Sobolev or Besov–Lipschitz regularity assumption on the gradient of the obstacle 𝜓 transfers to the gradient of the solution, provided the partial map x ↦ D ξ ⁢ f ⁢ ( x , ξ ) x\mapsto D_{\xi}f(x,\xi) belongs to a suitable Sobolev or Besov space. The novelty here is that we deal with sub-quadratic growth conditions with respect to the gradient variable, i.e. f ⁢ ( x , ξ ) ≈ a ⁢ ( x ) ⁢ | ξ | p f(x,\xi)\approx a(x)\lvert\xi\rvert^{p} with 1 < p < 2 1<p<2 , and where the map 𝑎 belongs to a Sobolev or Besov–Lipschitz space.


2019 ◽  
Vol 31 (6) ◽  
pp. 1501-1516 ◽  
Author(s):  
Chiara Gavioli

AbstractWe establish the higher differentiability of integer order of solutions to a class of obstacle problems assuming that the gradient of the obstacle possesses an extra integer differentiability property. We deal with the case in which the solutions to the obstacle problems satisfy a variational inequality of the form\int_{\Omega}\langle\mathcal{A}(x,Du),D(\varphi-u)\rangle\,dx\geq 0\quad\text{% for all }\varphi\in\mathcal{K}_{\psi}(\Omega).The main novelty is that the operator {\mathcal{A}} satisfies the so-called {p,q}-growth conditions with p and q linked by the relation\frac{q}{p}<1+\frac{1}{n}-\frac{1}{r},for {r>n}. Here {\psi\in W^{1,p}(\Omega)} is a fixed function, called obstacle, for which we assume {D\psi\in W^{1,2q-p}_{\mathrm{loc}}(\Omega)}, and {\mathcal{K}_{\psi}=\{w\in W^{1,p}(\Omega):w\geq\psi\text{ a.e. in }\Omega\}} is the class of admissible functions. We require for the partial map {x\mapsto\mathcal{A}(x,\xi\/)} a higher differentiability of Sobolev order in the space {W^{1,r}}, with {r>n} satisfying the condition above.


2020 ◽  
Vol 6 (2) ◽  
pp. 751-771 ◽  
Author(s):  
Claudia Capone ◽  
Teresa Radice

Abstract In this paper we establish the higher differentiability of solutions to the Dirichlet problem $$\begin{aligned} {\left\{ \begin{array}{ll} \text {div} (A(x, Du)) + b(x)u(x)=f &{} \text {in}\, \Omega \\ u=0 &{} \text {on} \, \partial \Omega \end{array}\right. } \end{aligned}$$ div ( A ( x , D u ) ) + b ( x ) u ( x ) = f in Ω u = 0 on ∂ Ω under a Sobolev assumption on the partial map $$x \rightarrow A(x, \xi )$$ x → A ( x , ξ ) . The novelty here is that we take advantage from the regularizing effect of the lower order term to deal with bounded solutions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Andrea Gentile

AbstractWe consider functionals of the form\mathcal{F}(v,\Omega)=\int_{\Omega}f(x,Dv(x))\,dx,with convex integrand with respect to the gradient variable, assuming that the function that measures the oscillation of the integrand with respect to the x variable belongs to a suitable Sobolev space {W^{1,q}}. We prove a higher differentiability result for the minimizers. We also infer a Lipschitz regularity result of minimizers if {q>n}, and a result of higher integrability for the gradient if {q=n}. The novelty here is that we deal with integrands satisfying subquadratic growth conditions with respect to gradient variable.


Universe ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. 71 ◽  
Author(s):  
Valerio Faraoni

Several classic one-dimensional problems of variational calculus originating in non-relativistic particle mechanics have solutions that are analogues of spatially homogeneous and isotropic universes. They are ruled by an equation which is formally a Friedmann equation for a suitable cosmic fluid. These problems are revisited and their cosmic analogues are pointed out. Some correspond to the main solutions of cosmology, while others are analogous to exotic cosmologies with phantom fluids and finite future singularities.


Sign in / Sign up

Export Citation Format

Share Document