Higher differentiability of solutions to a class of obstacle problems under non-standard growth conditions

2019 ◽  
Vol 31 (6) ◽  
pp. 1501-1516 ◽  
Author(s):  
Chiara Gavioli

AbstractWe establish the higher differentiability of integer order of solutions to a class of obstacle problems assuming that the gradient of the obstacle possesses an extra integer differentiability property. We deal with the case in which the solutions to the obstacle problems satisfy a variational inequality of the form\int_{\Omega}\langle\mathcal{A}(x,Du),D(\varphi-u)\rangle\,dx\geq 0\quad\text{% for all }\varphi\in\mathcal{K}_{\psi}(\Omega).The main novelty is that the operator {\mathcal{A}} satisfies the so-called {p,q}-growth conditions with p and q linked by the relation\frac{q}{p}<1+\frac{1}{n}-\frac{1}{r},for {r>n}. Here {\psi\in W^{1,p}(\Omega)} is a fixed function, called obstacle, for which we assume {D\psi\in W^{1,2q-p}_{\mathrm{loc}}(\Omega)}, and {\mathcal{K}_{\psi}=\{w\in W^{1,p}(\Omega):w\geq\psi\text{ a.e. in }\Omega\}} is the class of admissible functions. We require for the partial map {x\mapsto\mathcal{A}(x,\xi\/)} a higher differentiability of Sobolev order in the space {W^{1,r}}, with {r>n} satisfying the condition above.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Andrea Gentile

Abstract We establish some higher differentiability results of integer and fractional order for solutions to non-autonomous obstacle problems of the form min ⁡ { ∫ Ω f ⁢ ( x , D ⁢ v ⁢ ( x ) ) : v ∈ K ψ ⁢ ( Ω ) } , \min\biggl{\{}\int_{\Omega}f(x,Dv(x)):v\in\mathcal{K}_{\psi}(\Omega)\biggr{\}}, where the function 𝑓 satisfies 𝑝-growth conditions with respect to the gradient variable, for 1 < p < 2 1<p<2 , and K ψ ⁢ ( Ω ) \mathcal{K}_{\psi}(\Omega) is the class of admissible functions v ∈ u 0 + W 0 1 , p ⁢ ( Ω ) v\in u_{0}+W^{1,p}_{0}(\Omega) such that v ≥ ψ v\geq\psi a.e. in Ω, where u 0 ∈ W 1 , p ⁢ ( Ω ) u_{0}\in W^{1,p}(\Omega) is a fixed boundary datum. Here we show that a Sobolev or Besov–Lipschitz regularity assumption on the gradient of the obstacle 𝜓 transfers to the gradient of the solution, provided the partial map x ↦ D ξ ⁢ f ⁢ ( x , ξ ) x\mapsto D_{\xi}f(x,\xi) belongs to a suitable Sobolev or Besov space. The novelty here is that we deal with sub-quadratic growth conditions with respect to the gradient variable, i.e. f ⁢ ( x , ξ ) ≈ a ⁢ ( x ) ⁢ | ξ | p f(x,\xi)\approx a(x)\lvert\xi\rvert^{p} with 1 < p < 2 1<p<2 , and where the map 𝑎 belongs to a Sobolev or Besov–Lipschitz space.


2021 ◽  
Vol 27 ◽  
pp. 19 ◽  
Author(s):  
M. Caselli ◽  
M. Eleuteri ◽  
A. Passarelli di Napoli

In this paper we prove the the local Lipschitz continuity for solutions to a class of obstacle problems of the type min{ ∫ΩF(x, Dz) : z ∈ 𝛫ψ(Ω)}. Here 𝛫ψ(Ω) is the set of admissible functions z ∈ u0 + W1,p(Ω) for a given u0 ∈ W1,p(Ω) such that z ≥ ψ a.e. in Ω, ψ being the obstacle and Ω being an open bounded set of ℝn, n ≥ 2. The main novelty here is that we are assuming that the integrand F(x, Dz) satisfies (p, q)-growth conditions and as a function of the x-variable belongs to a suitable Sobolev class. We remark that the Lipschitz continuity result is obtained under a sharp closeness condition between the growth and the ellipticity exponents. Moreover, we impose less restrictive assumptions on the obstacle with respect to the previous regularity results. Furthermore, assuming the obstacle ψ is locally bounded, we prove the local boundedness of the solutions to a quite large class of variational inequalities whose principal part satisfies non standard growth conditions.


2018 ◽  
Vol 20 (08) ◽  
pp. 1750083
Author(s):  
Yumi Cho

We study a generalized variational inequality with an irregular obstacle in the frame of Orlicz–Sobolev spaces. Over a bounded nonsmooth domain having a sufficiently flat boundary in the Reifenberg sense, a global weighted Orlicz estimate is established for the gradient of the solution to the obstacle problem assumed BMO smallness of a coefficient.


Sign in / Sign up

Export Citation Format

Share Document