Experimental control of photovoltaic system using neuro – Kalman filter maximum power point tracking (MPPT) technique

Author(s):  
Tarek Boutabba ◽  
Said Drid ◽  
Larbi Chrifi-Alaoui

AbstractThis paper proposes a new maximum power point tracking (MPPT) technique of photovoltaic system based on Kalman filter (KF) and associate to Artificial Neural Networks (ANN). The design process of photovoltaic (PV) modules can be greatly enhanced by using advanced and accurate models. Furthermore, the use of a neural model especially for accuracy improvement of the electrical equivalent circuit parameters, where the analytic equation of the model cannot be easily expressed, because the relationship between parameters is nonlinear. The proposed neural network is trained once by using some measured I-V and P-V curves and to keep in account the change of all the parameters at different operating conditions. For that reason, to get the fast tracking performance on this noisy conditions, and to maximize the power of photovoltaic system a KF method have been used. The performance analysis of perturb and observe (P&O) and KF MPPT techniques has been simulated in MATLAB/Simulink software and their model and control schemes has been analyzed and validated.

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Hafsa Abouadane ◽  
Abderrahim Fakkar ◽  
Benyounes Oukarfi

The photovoltaic panel is characterized by a unique point called the maximum power point (MPP) where the panel produces its maximum power. However, this point is highly influenced by the weather conditions and the fluctuation of load which drop the efficiency of the photovoltaic system. Therefore, the insertion of the maximum power point tracking (MPPT) is compulsory to track the maximum power of the panel. The approach adopted in this paper is based on combining the strengths of two maximum power point tracking techniques. As a result, an efficient maximum power point tracking method is obtained. It leads to an accurate determination of the MPP during different situations of climatic conditions and load. To validate the effectiveness of the proposed MPPT method, it has been simulated in matlab/simulink under different conditions.


2012 ◽  
Vol 588-589 ◽  
pp. 583-586
Author(s):  
Yu Xin Wang ◽  
Feng Ge Zhang ◽  
Xiao Ju Yin ◽  
Shi Lu Zhu

A derivation calculation methods for the maximum power point tracking is proposed in this paper. This method is the direct calculation method for the maximum power point tracking, through the calculation of the derivative value of the power to voltage, adjust the change values of occupies emptiescompared, which is used to deduce the voltage and current value, judge whether the derivative of the power to the voltage is zero, if it is ture, the maximum power point is got. Hardware is used the method to regulate the duty ratio of PWM in DC/DC boost circuit ,though once sampling, it can calculate the value of voltage and the duty ratio at maximum power point. The prototype experiments using DSP2812 chip verify that the inverter can better realize the most power tracing, high accuracy, and the system has the high stability.


Sign in / Sign up

Export Citation Format

Share Document