Delay-dependent robust stability analysis of uncertain fractional-order neutral systems with distributed delays and nonlinear perturbations subject to input saturation

Author(s):  
Zahra Sadat Aghayan ◽  
Alireza Alfi ◽  
J. A. Tenreiro Machado

Abstract In this article, we address the delay-dependent robust stability of uncertain fractional order neutral-type (FONT) systems with distributed delays, nonlinear perturbations, and input saturation. With the aid of the Lyapunov–Krasovskii functional, criteria on asymptotic robust stability of FONT, expressed in terms of linear matrix inequalities, are constructed to compute the state-feedback controller gains. The controller gains are determined subject to maximizing the domain of attraction via the cone complementarity linearization algorithm. The theoretical results are validated using numerical simulations.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Kaibo Shi ◽  
Hong Zhu ◽  
Shouming Zhong ◽  
Yong Zeng ◽  
Yuping Zhang

This paper is concerned with the problem of delay-dependent robust stability analysis for a class of uncertain neutral type Lur’e systems with mixed time-varying delays. The system has not only time-varying uncertainties and sector-bounded nonlinearity, but also discrete and distributed delays, which has never been discussed in the previous literature. Firstly, by employing one effective mathematical technique, some less conservative delay-dependent stability results are established without employing the bounding technique and the mode transformation approach. Secondly, by constructing an appropriate new type of Lyapunov-Krasovskii functional with triple terms, improved delay-dependent stability criteria in terms of linear matrix inequalities (LMIs) derived in this paper are much brief and valid. Furthermore, both nonlinearities located in finite sector and infinite one have been also fully taken into account. Finally, three numerical examples are presented to illustrate lesser conservatism and the advantage of the proposed main results.


2012 ◽  
Vol 457-458 ◽  
pp. 716-722
Author(s):  
Guo Quan Liu ◽  
Simon X. Yang

This paper is concerned with the robust stability analysis problem for stochastic neural networks of neutral-type with uncertainties and time-varying delays. Novel stability criteria are proposed in terms of linear matrix inequality (LMI) by defining a Lyapunov-Krasovskii functional and using the stochastic analysis technique. Two examples are given to show the effectiveness of the obtained conditions.


2017 ◽  
Vol 11 (01) ◽  
pp. 1850007 ◽  
Author(s):  
Peerapongpat Singkibud ◽  
Kanit Mukdasai

In this paper, we investigate the problem of delay-range-dependent robust stability analysis for uncertain neutral systems with interval time-varying delays and nonlinear perturbations. The restriction on the derivative of the discrete interval time-varying delay is removed. By applying the augmented Lyapunov–Krasovskii functional approach, new improved integral inequalities, descriptor model transformation, Leibniz–Newton formula and utilization of zero equation, new delay-range-dependent robust stability criteria are derived in terms of linear matrix inequalities (LMIs) for the considered systems. Numerical examples have shown to illustrate the significant improvement on the conservatism of the delay upper bound over some reported results.


2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
W. Weera ◽  
P. Niamsup

We study the robust stability criteria for uncertain neutral systems with interval time-varying delays and time-varying nonlinear perturbations simultaneously. The constraint on the derivative of the time-varying delay is not required, which allows the time-delay to be a fast time-varying function. Based on the Lyapunov-Krasovskii theory, we derive new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) which can be solved by various available algorithms. Numerical examples are given to demonstrate that the derived conditions are much less conservative than those given in the literature.


2011 ◽  
Vol 89 (8) ◽  
pp. 827-840 ◽  
Author(s):  
S. Lakshmanan ◽  
P. Balasubramaniam

In this paper, robust stability analysis for neutral-type neural networks with time-varying delays and Markovian jumping parameters is conducted. By using the delay-decomposition approach, a new Lyapunov–Krasovskii functional is constructed. Based on this Lyapunov–Krasovskii functional and some stochastic stability theory, delay-dependent stability criteria are obtained in terms of linear matrix inequalities. Finally, three numerical examples are given to illustrate the effectiveness and reduced conservatism of our theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xin Zhou ◽  
Hexin Zhang ◽  
Xiaoxiang Hu ◽  
Junjun Hui ◽  
Tianmei Li

This paper investigated delay-dependent robust stability criteria for systems with interval time-varying delays and nonlinear perturbations. A delay-partitioning approach is used in this paper, the delay-interval is partitioned into multiple equidistant subintervals, a new Lyapunov-Krasovskii (L-K) functional contains some triple-integral terms, and augment terms are introduced on these intervals. Then, by using integral inequalities method together with free-weighting matrix approach, a new less conservative delay-dependent stability criterion is formulated in terms of linear matrix inequalities (LMIs), which can be easily solved by optimization algorithms. Numerical examples are given to show the effectiveness and the benefits of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document