Combination of GPS/leveling and the gravimetric geoid by using the thin plate spline interpolation technique via finite element method

2007 ◽  
Vol 1 (4) ◽  
Author(s):  
Piroska Zaletnyik ◽  
Lajos Völgyesi ◽  
István Kirchner ◽  
Béla Paláncz
2019 ◽  
Vol 60 ◽  
pp. C33-C51
Author(s):  
Lishan Fang

The discrete thin plate spline is a data fitting and smoothing technique for large datasets. Current research only uses uniform grids for this discrete smoother, which may require a fine grid to achieve a certain accuracy. This leads to a large system of equations and high computational costs. Adaptive refinement adapts the precision of the solution to reduce computational costs by refining only in sensitive regions. The error indicator is an essential part of the adaptive refinement as it identifies whether certain regions should be refined. Error indicators are well researched in the finite element method, but they might not work for the discrete smoother as data may be perturbed by noise and not uniformly distributed. Two error indicators are presented: one computes errors by solving an auxiliary problem and the other uses the bounds of the finite element error. Their performances are evaluated and compared with 2D model problems. References H. Chui and A. Rangarajan. A new point matching algorithm for non-rigid registration. Comput. Vis. Image Und., 89 (23): 114141, 2003. doi:10.1016/S1077-3142(03)00009-2. W. F. Mitchell. A comparison of adaptive refinement techniques for elliptic problems. ACM T. Math. Software, 15 (4): 326347, 1989. doi:10.1145/76909.76912. S. Roberts, M. Hegland, and I. Altas. Approximation of a thin plate spline smoother using continuous piecewise polynomial functions. SIAM J. Numer. Anal., 41(1):208234, 2003. doi:10.1137/S0036142901383296. G. Sewell. Analysis of a finite element method. Springer-Verlag, 1985. doi:10.1007/978-1-4684-6331-6. R. Sprengel, K. Rohr, and H. S. Stiehl. Thin-plate spline approximation for image registration. In P. IEEE EMBS, volume 3, pages 11901191. IEEE, 1996. doi:10.1109/IEMBS.1996.652767. L. Stals. Efficient solution techniques for a finite element thin plate spline formulation. J. Sci. Comput., 63(2):374409, 2015. doi:10.1007/s10915-014-9898-x. G. Wahba. Spline models for observational data, volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, 1990. doi:10.1137/1.9781611970128.


2021 ◽  
Vol 62 ◽  
pp. C45-C57
Author(s):  
Lishan Fang ◽  
Linda Stals

The discrete thin plate spline smoother fits smooth surfaces to large data sets efficiently. It combines the favourable properties of the finite element surface fitting and thin plate splines. The efficiency of its finite element grid is improved by adaptive refinement, which adapts the precision of the solution. It reduces computational costs by refining only in sensitive regions, which are identified using error indicators. While many error indicators have been developed for the finite element method, they may not work for the discrete smoother. In this article we show three error indicators adapted from the finite element method for the discrete smoother. A numerical experiment is provided to evaluate their performance in producing efficient finite element grids. References F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pat. Anal. Mach. Int. 11.6 (1989), pp. 567–585. doi: 10.1109/34.24792. C. Chen and Y. Li. A robust method of thin plate spline and its application to DEM construction. Comput. Geosci. 48 (2012), pp. 9–16. doi: 10.1016/j.cageo.2012.05.018. L. Fang. Error estimation and adaptive refinement of finite element thin plate spline. PhD thesis. The Australian National University. http://hdl.handle.net/1885/237742. L. Fang. Error indicators and adaptive refinement of the discrete thin plate spline smoother. ANZIAM J. 60 (2018), pp. 33–51. doi: 10.21914/anziamj.v60i0.14061. M. F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. Commun. Stat. Simul. Comput. 19.2 (1990), pp. 433–450. doi: 10.1080/0361091900881286. W. F. Mitchell. A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Soft. 15.4 (1989), pp. 326–347. doi: 10.1145/76909.76912. R. F. Reiniger and C. K. Ross. A method of interpolation with application to oceanographic data. Deep Sea Res. Oceanographic Abs. 15.2 (1968), pp. 185–193. doi: 10.1016/0011-7471(68)90040-5. S. Roberts, M. Hegland, and I. Altas. Approximation of a thin plate spline smoother using continuous piecewise polynomial functions. SIAM J. Numer. Anal. 41.1 (2003), pp. 208–234. doi: 10.1137/S0036142901383296. D. Ruprecht and H. Muller. Image warping with scattered data interpolation. IEEE Comput. Graphics Appl. 15.2 (1995), pp. 37–43. doi: 10.1109/38.365004. E. G. Sewell. Analysis of a finite element method. Springer, 2012. doi: 10.1007/978-1-4684-6331-6. L. Stals. Efficient solution techniques for a finite element thin plate spline formulation. J. Sci. Comput. 63.2 (2015), pp. 374–409. doi: 10.1007/s10915-014-9898-x. O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure for practical engineerng analysis. Int. J. Numer. Meth. Eng. 24.2 (1987), pp. 337–357. doi: 10.1002/nme.1620240206.


2013 ◽  
Vol 389 ◽  
pp. 267-272 ◽  
Author(s):  
Peng Shen ◽  
Yu Min He ◽  
Zhi Shan Duan ◽  
Zhong Bin Wei ◽  
Pan Gao

In this paper, a new kind of finite element method (FEM) is proposed, which use the two-dimensional Hermite interpolation scaling function constructed by tensor product as the basis interpolation function of field function, and then combine with the energy functional with related mechanics and variational principle, the wavelet finite element equations for solving elastic thin plate unit that constructed in this paper are derived. Then the bending problem of thin plate is solved very quickly and availably through the matlab program. The numerical example in this paper indicates the correctness and validity of this method, and has high calculation precision and convergence speed. Moreover, it also provides a reliable method to solve the free vibration problem of thin plate and the pipe crack problems.


2001 ◽  
Vol 37 (5) ◽  
pp. 3238-3241 ◽  
Author(s):  
A. Abakar ◽  
J.L. Coulomb ◽  
G. Meunier ◽  
F.-X. Zgainski ◽  
C. Guerin

Sign in / Sign up

Export Citation Format

Share Document