Automorphisms of the standard Borel subgroup of the symplectic group over a commutative ring

2008 ◽  
Vol 11 (2) ◽  
Author(s):  
Shikun Ou ◽  
Dengyin Wang
Author(s):  
Pratyusha Chattopadhyay ◽  
Ravi A. Rao

AbstractIt is shown that the set of orbits of the action of the elementary symplectic group on all unimodular rows over a commutative ring of characteristic not 2 is identical with the set of orbits of the action of the corresponding elementary general linear group. This result is used to improve injective stability for K1 of the symplectic group over non-singular affine algebras.


1992 ◽  
Vol 127 ◽  
pp. 15-47 ◽  
Author(s):  
Takao Watanabe

Let G = Sp4 be the symplectic group of degree two defined over an algebraic number field F and K the standard maximal compact subgroup of the adele group G (A). By the general theory of Eisenstein series ([14]), one knows that the Hilbert space L2(G(F)\G(A)) has an orthogonal decomposition of the formL2(G(F)\G(A)) = L2(G) ⊕ L2(B) ⊕ L2(P1) ⊕ L2(P1),where B is a Borel subgroup and Pi are standard maximal parabolic subgroups in G for i = 1,2. The purpose of this paper is to study the space L2d(B) associated to discrete spectrurns in L2(B).


2019 ◽  
Vol 56 (2) ◽  
pp. 252-259
Author(s):  
Ebrahim Hashemi ◽  
Fatemeh Shokuhifar ◽  
Abdollah Alhevaz

Abstract The intersection of all maximal right ideals of a near-ring N is called the quasi-radical of N. In this paper, first we show that the quasi-radical of the zero-symmetric near-ring of polynomials R0[x] equals to the set of all nilpotent elements of R0[x], when R is a commutative ring with Nil (R)2 = 0. Then we show that the quasi-radical of R0[x] is a subset of the intersection of all maximal left ideals of R0[x]. Also, we give an example to show that for some commutative ring R the quasi-radical of R0[x] coincides with the intersection of all maximal left ideals of R0[x]. Moreover, we prove that the quasi-radical of R0[x] is the greatest quasi-regular (right) ideal of it.


Filomat ◽  
2017 ◽  
Vol 31 (10) ◽  
pp. 2933-2941 ◽  
Author(s):  
Unsal Tekir ◽  
Suat Koc ◽  
Kursat Oral

In this paper, we present a new classes of ideals: called n-ideal. Let R be a commutative ring with nonzero identity. We define a proper ideal I of R as an n-ideal if whenever ab ? I with a ? ?0, then b ? I for every a,b ? R. We investigate some properties of n-ideals analogous with prime ideals. Also, we give many examples with regard to n-ideals.


1982 ◽  
Vol 88 ◽  
pp. 17-53 ◽  
Author(s):  
G. van der Geer ◽  
K. Ueno

Around the beginning of this century G. Humbert ([9]) made a detailed study of the properties of compact complex surfaces which can be parametrized by singular abelian functions. A surface parametrized by singular abelian functions is the image under a holomorphic map of a singular abelian surface (i.e. an abelian surface whose endomorphism ring is larger than the ring of rational integers). Humbert showed that the periods of a singular abelian surface satisfy a quadratic relation with integral coefficients and he constructed an invariant D of such a relation with respect to the action of the integral symplectic group on the periods.


2019 ◽  
Vol 12 (05) ◽  
pp. 1950079
Author(s):  
Ahmad Al Khalaf ◽  
Iman Taha ◽  
Orest D. Artemovych ◽  
Abdullah Aljouiiee

Earlier D. A. Jordan, C. R. Jordan and D. S. Passman have investigated the properties of Lie rings Der [Formula: see text] of derivations in a commutative differentially prime rings [Formula: see text]. We study Lie rings Der [Formula: see text] in the non-commutative case and prove that if [Formula: see text] is a [Formula: see text]-torsion-free [Formula: see text]-semiprime ring, then [Formula: see text] is a semiprime Lie ring or [Formula: see text] is a commutative ring.


Author(s):  
Amr Ali Al-Maktry

AbstractLet R be a finite commutative ring. The set $${{\mathcal{F}}}(R)$$ F ( R ) of polynomial functions on R is a finite commutative ring with pointwise operations. Its group of units $${{\mathcal{F}}}(R)^\times $$ F ( R ) × is just the set of all unit-valued polynomial functions. We investigate polynomial permutations on $$R[x]/(x^2)=R[\alpha ]$$ R [ x ] / ( x 2 ) = R [ α ] , the ring of dual numbers over R, and show that the group $${\mathcal{P}}_{R}(R[\alpha ])$$ P R ( R [ α ] ) , consisting of those polynomial permutations of $$R[\alpha ]$$ R [ α ] represented by polynomials in R[x], is embedded in a semidirect product of $${{\mathcal{F}}}(R)^\times $$ F ( R ) × by the group $${\mathcal{P}}(R)$$ P ( R ) of polynomial permutations on R. In particular, when $$R={\mathbb{F}}_q$$ R = F q , we prove that $${\mathcal{P}}_{{\mathbb{F}}_q}({\mathbb{F}}_q[\alpha ])\cong {\mathcal{P}}({\mathbb{F}}_q) \ltimes _\theta {{\mathcal{F}}}({\mathbb{F}}_q)^\times $$ P F q ( F q [ α ] ) ≅ P ( F q ) ⋉ θ F ( F q ) × . Furthermore, we count unit-valued polynomial functions on the ring of integers modulo $${p^n}$$ p n and obtain canonical representations for these functions.


Sign in / Sign up

Export Citation Format

Share Document