Critical maximal subgroups and conjugacy of supplements in finite soluble groups

2018 ◽  
Vol 21 (1) ◽  
pp. 45-63
Author(s):  
Barbara Baumeister ◽  
Gil Kaplan

AbstractLetGbe a finite group with an abelian normal subgroupN. When doesNhave a unique conjugacy class of complements inG? We consider this question with a focus on properties of maximal subgroups. As corollaries we obtain Theorems 1.6 and 1.7 which are closely related to a result by Parker and Rowley on supplements of a nilpotent normal subgroup [3, Theorem 1]. Furthermore, we consider families of maximal subgroups ofGclosed under conjugation whose intersection equals{\Phi(G)}. In particular, we characterize the soluble groups having a unique minimal family with this property (Theorem 2.3, Remark 2.4). In the case when{\Phi(G)=1}, these are exactly the soluble groups in which each abelian normal subgroup has a unique conjugacy class of complements.

1978 ◽  
Vol 25 (1) ◽  
pp. 71-91 ◽  
Author(s):  
M. J. Tomkinson

AbstractIf is a saturated formation of finite soluble groups and G is a finite group whose -residual A is abelian then it is well known that G splits over A and the complements are conjugate. Hartley and Tomkinson (1975) considered the special case of this result in which is the class of nilpotent groups and obtained similar results for abelian-by-hypercentral groups with rank restrictions on the abelian normal subgroup. Here we consider the super-soluble case, obtaining corresponding results for abelian-by-hypercyclic groups.


Author(s):  
SH. RAHIMI ◽  
Z. AKHLAGHI

Abstract Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$ , where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$ .


1997 ◽  
Vol 40 (2) ◽  
pp. 243-246
Author(s):  
Yanming Wang

A subgroup H is called c-normal in a group G if there exists a normal subgroup N of G such that HN = G and H∩N ≤ HG, where HG =: Core(H) = ∩g∈GHg is the maximal normal subgroup of G which is contained in H. We use a result on primitive groups and the c-normality of maximal subgroups of a finite group G to obtain results about the influence of the set of maximal subgroups on the structure of G.


1993 ◽  
Vol 35 (1) ◽  
pp. 95-98 ◽  
Author(s):  
James C. Beidleman ◽  
Howard Smith

For any group G, denote by φf(G respectively L(G)) the intersection of all maximal subgroups of finite index (respectively finite nonprime index) in G, with the usual provision that the subgroup concerned equals Gif no such maximals exist. The subgroup φf(G) was discussed in [1] in connection with a property v possessed by certain groups: a group G has v if and only if every nonnilpotent, normal subgroup of G has a finite, nonnilpotent G-image. It was shown there, for instance, that G/φf(G) has v for all groups G. The subgroup L(G), in the case where G is finite, was investigated at some length in [3], one of the main results being that L(G) is supersoluble. (A published proof of this result appears as Theorem 3 of [4]). The present paper is concerned with the role of L(G) in groups G having property v or a related property a, the definition of which is obtained by replacing “nonnilpotent” by “nonsupersoluble” in the definition of v. We also present a result (namely Theorem 4) which displays a close relationship between the subgroups L(G) and φf(G) in an arbitrary group G. Some of the results for finite groups in [3] are found to hold with rather weaker hypotheses and, in fact, remain true for groups with v or a. We recall that if a group has a it also has v ([2]Theorem 2) but not conversely. For example, G = (x, y: y-1xy = x2)has v but not a. It is a well-known result of Gaschütz ([8], 5.2.15) that, in a finite group G, if His a normal subgroup containing φ(G) such that H/φ(G) is nilpotent than His nilpotent. This remains true in the case where G is any group with v [1, Proposition 1]. Our first result is in a similar vein and is a generalization of Theorem 9 of [7] and Theorem 1.2.9 of [3], the latter of which states that, for a finite group G, if G/L(G) is supersoluble, then so is G.


1968 ◽  
Vol 11 (3) ◽  
pp. 371-374 ◽  
Author(s):  
C.Y. Tang

In [1] Gaschütz has shown that a finite group G splits over an abelian normal subgroup N if its Frattini subgroup ϕ(G) intersects N trivially. When N is a non-abelian nilpotent normal subgroup of G the condition ϕ(G)∩ N = 1 cannot be satisfied: for if N is non-abelian then the commutator subgroup C(N) of N is non-trivial. Now N is nilpotent, whence 1 ≠ C(N)⊂ϕ(N). Since G is a finite group, therefore, by (3, theorem 7.3.17) ϕ⊂ϕ(G). It follows that ϕ(G) ∩ N ≠ 1. Thus the condition ϕ(G) ∩ N = 1 must be modified. In §1 we shall derive some similar type of conditions for G to split over N when the restriction of N being an abelian normal subgroup is removed. In § 2 we shall give a characterization of splitting extensions of N in which every subgroup splits over its intersection with N.


1970 ◽  
Vol 3 (2) ◽  
pp. 273-276
Author(s):  
John Randolph

Let G be a finite group with a nilpotent maximal subgroup S and let P denote the 2-Sylow subgroup of S. It is shown that if P ∩ Q is a normal subgroup of P for any 2-Sylow subgroup Q of G, then G is solvable.


Filomat ◽  
2020 ◽  
Vol 34 (5) ◽  
pp. 1713-1719
Author(s):  
Neda Ahanjideh

For a finite group G, let Z(G) denote the center of G and cs*(G) be the set of non-trivial conjugacy class sizes of G. In this paper, we show that if G is a finite group such that for some odd prime power q ? 4, cs*(G) = cs*(PGL2(q)), then either G ? PGL2(q) X Z(G) or G contains a normal subgroup N and a non-trivial element t ? G such that N ? PSL2(q)X Z(G), t2 ? N and G = N. ?t?. This shows that the almost simple groups cannot be determined by their set of conjugacy class sizes (up to an abelian direct factor).


2016 ◽  
Vol 94 (2) ◽  
pp. 266-272
Author(s):  
ANTONIO BELTRÁN ◽  
MARÍA JOSÉ FELIPE ◽  
CARMEN MELCHOR

Let $G$ be a finite group and let $N$ be a normal subgroup of $G$. We determine the structure of $N$ when the diameter of the graph associated to the $G$-conjugacy classes contained in $N$ is as large as possible, that is, equal to three.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2165
Author(s):  
Abd El-Rahman Heliel ◽  
Mohammed Al-Shomrani ◽  
Adolfo Ballester-Bolinches

Let σ={σi:i∈I} be a partition of the set P of all prime numbers and let G be a finite group. We say that G is σ-primary if all the prime factors of |G| belong to the same member of σ. G is said to be σ-soluble if every chief factor of G is σ-primary, and G is σ-nilpotent if it is a direct product of σ-primary groups. It is known that G has a largest normal σ-nilpotent subgroup which is denoted by Fσ(G). Let n be a non-negative integer. The n-term of the σ-Fitting series of G is defined inductively by F0(G)=1, and Fn+1(G)/Fn(G)=Fσ(G/Fn(G)). If G is σ-soluble, there exists a smallest n such that Fn(G)=G. This number n is called the σ-nilpotent length of G and it is denoted by lσ(G). If F is a subgroup-closed saturated formation, we define the σ-F-lengthnσ(G,F) of G as the σ-nilpotent length of the F-residual GF of G. The main result of the paper shows that if A is a maximal subgroup of G and G is a σ-soluble, then nσ(A,F)=nσ(G,F)−i for some i∈{0,1,2}.


2015 ◽  
Vol 22 (spec01) ◽  
pp. 835-848
Author(s):  
Ivo M. Michailov

Let K be a field and G be a finite group. Let G act on the rational function field K(x(g) : g ∈ G) by K-automorphisms defined by g · x(h) = x(gh) for any g, h ∈ G. Denote by K(G) the fixed field K(x(g) : g ∈ G)G. Noether's problem then asks whether K(G) is rational over K. Let p be an odd prime and let G be a p-group of exponent pe. Assume also that (i) char K = p > 0, or (ii) char K ≠ p and K contains a primitive pe-th root of unity. In this paper we prove that K(G) is rational over K for the following two types of groups: (1) G is a finite p-group with an abelian normal subgroup H of index p such that H is a direct product of normal subgroups of G of the type Cpb × (Cp)c for some b, c with 1 ≤ b and 0 ≤ c; (2) G is any group of order p5 from the isoclinic families with numbers 1, 2, 3, 4, 8 and 9.


Sign in / Sign up

Export Citation Format

Share Document