Splitting theorems in abelian-by-hypercyclic groups

1978 ◽  
Vol 25 (1) ◽  
pp. 71-91 ◽  
Author(s):  
M. J. Tomkinson

AbstractIf is a saturated formation of finite soluble groups and G is a finite group whose -residual A is abelian then it is well known that G splits over A and the complements are conjugate. Hartley and Tomkinson (1975) considered the special case of this result in which is the class of nilpotent groups and obtained similar results for abelian-by-hypercentral groups with rank restrictions on the abelian normal subgroup. Here we consider the super-soluble case, obtaining corresponding results for abelian-by-hypercyclic groups.

2018 ◽  
Vol 21 (1) ◽  
pp. 45-63
Author(s):  
Barbara Baumeister ◽  
Gil Kaplan

AbstractLetGbe a finite group with an abelian normal subgroupN. When doesNhave a unique conjugacy class of complements inG? We consider this question with a focus on properties of maximal subgroups. As corollaries we obtain Theorems 1.6 and 1.7 which are closely related to a result by Parker and Rowley on supplements of a nilpotent normal subgroup [3, Theorem 1]. Furthermore, we consider families of maximal subgroups ofGclosed under conjugation whose intersection equals{\Phi(G)}. In particular, we characterize the soluble groups having a unique minimal family with this property (Theorem 2.3, Remark 2.4). In the case when{\Phi(G)=1}, these are exactly the soluble groups in which each abelian normal subgroup has a unique conjugacy class of complements.


2008 ◽  
Vol 01 (03) ◽  
pp. 369-382
Author(s):  
Nataliya V. Hutsko ◽  
Vladimir O. Lukyanenko ◽  
Alexander N. Skiba

Let G be a finite group and H a subgroup of G. Then H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G. Then we say that H is nearly S-quasinormal in G if G has an S-quasinormal subgroup T such that HT = G and T ∩ H ≤ HsG. Our main result here is the following theorem. Let [Formula: see text] be a saturated formation containing all supersoluble groups and G a group with a normal subgroup E such that [Formula: see text]. Suppose that every non-cyclic Sylow subgroup P of E has a subgroup D such that 1 < |D| < |P| and all subgroups H of P with order |H| = |D| and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a non-abelian 2-group) having no supersoluble supplement in G are nearly S-quasinormal in G. Then [Formula: see text].


1968 ◽  
Vol 11 (3) ◽  
pp. 371-374 ◽  
Author(s):  
C.Y. Tang

In [1] Gaschütz has shown that a finite group G splits over an abelian normal subgroup N if its Frattini subgroup ϕ(G) intersects N trivially. When N is a non-abelian nilpotent normal subgroup of G the condition ϕ(G)∩ N = 1 cannot be satisfied: for if N is non-abelian then the commutator subgroup C(N) of N is non-trivial. Now N is nilpotent, whence 1 ≠ C(N)⊂ϕ(N). Since G is a finite group, therefore, by (3, theorem 7.3.17) ϕ⊂ϕ(G). It follows that ϕ(G) ∩ N ≠ 1. Thus the condition ϕ(G) ∩ N = 1 must be modified. In §1 we shall derive some similar type of conditions for G to split over N when the restriction of N being an abelian normal subgroup is removed. In § 2 we shall give a characterization of splitting extensions of N in which every subgroup splits over its intersection with N.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefanos Aivazidis ◽  
Thomas Müller

Abstract Theorem C in [S. Dolfi, M. Herzog, G. Kaplan and A. Lev, The size of the solvable residual in finite groups, Groups Geom. Dyn. 1 (2007), 4, 401–407] asserts that, in a finite group with trivial Fitting subgroup, the size of the soluble residual of the group is bounded from below by a certain power of the group order and that the inequality is sharp. Inspired by this result and some of the arguments in the above article, we establish the following generalisation: if 𝔛 is a subgroup-closed Fitting formation of full characteristic which does not contain all finite groups and X ¯ \overline{\mathfrak{X}} is the extension-closure of 𝔛, then there exists an (explicitly known and optimal) constant 𝛾 depending only on 𝔛 such that, for all non-trivial finite groups 𝐺 with trivial 𝔛-radical, | G X ¯ | > | G | γ \lvert G^{\overline{\mathfrak{X}}}\rvert>\lvert G\rvert^{\gamma} , where G X ¯ G^{\overline{\mathfrak{X}}} is the X ¯ \overline{\mathfrak{X}} -residual of 𝐺. When X = N \mathfrak{X}=\mathfrak{N} , the class of finite nilpotent groups, it follows that X ¯ = S \overline{\mathfrak{X}}=\mathfrak{S} , the class of finite soluble groups; thus we recover the original theorem of Dolfi, Herzog, Kaplan, and Lev. In the last section of our paper, building on J. G. Thompson’s classification of minimal simple groups, we exhibit a family of subgroup-closed Fitting formations 𝔛 of full characteristic such that S ⊂ X ¯ ⊂ E \mathfrak{S}\subset\overline{\mathfrak{X}}\subset\mathfrak{E} , where 𝔈 denotes the class of all finite groups, thus providing applications of our main result beyond the reach of the above theorem.


1994 ◽  
Vol 36 (2) ◽  
pp. 241-247 ◽  
Author(s):  
A. Ballester-Bolinches ◽  
M. D. Pérez-Ramos

Throughout the paper we consider only finite groups.J. C. Beidleman and H. Smith [3] have proposed the following question: “If G is a group and Ha subnormal subgroup of G containing Φ(G), the Frattini subgroup of G, such that H/Φ(G)is supersoluble, is H necessarily supersoluble? “In this paper, we give not only an affirmative answer to this question but also we see that the above result still holds if supersoluble is replaced by any saturated formation containing the class of all nilpotent groups.


2013 ◽  
Vol 20 (03) ◽  
pp. 421-426 ◽  
Author(s):  
Zhencai Shen ◽  
Ni Du

Let [Formula: see text] be a saturated formation containing [Formula: see text], and G be a finite group. Li etc. proposed a problem: whether there is a normality such that the following two statements are equivalent: (i) [Formula: see text]. (ii) There exists a normal subgroup H of G such that [Formula: see text] and for each Sylow subgroup P of F*(H), every member in some [Formula: see text] satisfies the above normality in G. In this paper, we find a normality satisfying the above problem. Moreover, by using the concept of ℋ-subgroups, we obtain other results about the influence of the members of some fixed [Formula: see text] on the structure of G.


2015 ◽  
Vol 22 (spec01) ◽  
pp. 835-848
Author(s):  
Ivo M. Michailov

Let K be a field and G be a finite group. Let G act on the rational function field K(x(g) : g ∈ G) by K-automorphisms defined by g · x(h) = x(gh) for any g, h ∈ G. Denote by K(G) the fixed field K(x(g) : g ∈ G)G. Noether's problem then asks whether K(G) is rational over K. Let p be an odd prime and let G be a p-group of exponent pe. Assume also that (i) char K = p > 0, or (ii) char K ≠ p and K contains a primitive pe-th root of unity. In this paper we prove that K(G) is rational over K for the following two types of groups: (1) G is a finite p-group with an abelian normal subgroup H of index p such that H is a direct product of normal subgroups of G of the type Cpb × (Cp)c for some b, c with 1 ≤ b and 0 ≤ c; (2) G is any group of order p5 from the isoclinic families with numbers 1, 2, 3, 4, 8 and 9.


Author(s):  
IVAN ANDRUS ◽  
PÁL HEGEDŰS ◽  
TETSURO OKUYAMA

AbstractOne way of expressing the self-duality $A\cong {\rm Hom}(A,\mathbb{C})$ of Abelian groups is that their character tables are self-transpose (in a suitable ordering). In this paper we extend the duality to some noncommutative groups considering when the character table of a finite group is close to being the transpose of the character table for some other group. We find that groups dual to each other have dual normal subgroup lattices. We show that our concept of duality cannot work for non-nilpotent groups and we describe p-group examples.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefanos Aivazidis ◽  
Inna N. Safonova ◽  
Alexander N. Skiba

Abstract Let 𝐺 be a finite group, and let 𝔉 be a hereditary saturated formation. We denote by Z F ⁢ ( G ) \mathbf{Z}_{\mathfrak{F}}(G) the product of all normal subgroups 𝑁 of 𝐺 such that every chief factor H / K H/K of 𝐺 below 𝑁 is 𝔉-central in 𝐺, that is, ( H / K ) ⋊ ( G / C G ⁢ ( H / K ) ) ∈ F (H/K)\rtimes(G/\mathbf{C}_{G}(H/K))\in\mathfrak{F} . A subgroup A ⩽ G A\leqslant G is said to be 𝔉-subnormal in the sense of Kegel, or 𝐾-𝔉-subnormal in 𝐺, if there is a subgroup chain A = A 0 ⩽ A 1 ⩽ ⋯ ⩽ A n = G A=A_{0}\leqslant A_{1}\leqslant\cdots\leqslant A_{n}=G such that either A i - 1 ⁢ ⊴ ⁢ A i A_{i-1}\trianglelefteq A_{i} or A i / ( A i - 1 ) A i ∈ F A_{i}/(A_{i-1})_{A_{i}}\in\mathfrak{F} for all i = 1 , … , n i=1,\ldots,n . In this paper, we prove the following generalization of Schenkman’s theorem on the centraliser of the nilpotent residual of a subnormal subgroup: Let 𝔉 be a hereditary saturated formation containing all nilpotent groups, and let 𝑆 be a 𝐾-𝔉-subnormal subgroup of 𝐺. If Z F ⁢ ( E ) = 1 \mathbf{Z}_{\mathfrak{F}}(E)=1 for every subgroup 𝐸 of 𝐺 such that S ⩽ E S\leqslant E , then C G ⁢ ( D ) ⩽ D \mathbf{C}_{G}(D)\leqslant D , where D = S F D=S^{\mathfrak{F}} is the 𝔉-residual of 𝑆.


2000 ◽  
Vol 62 (2) ◽  
pp. 311-317 ◽  
Author(s):  
L. G. Kovács ◽  
Cheryl E. Praeger

The minimal faithful permutation degree μ(G) of a finite group G is the least positive integer n such that G is isomorphic to a subgroup of the symmetric group Sn. Let N be a normal subgroup of a finite group G. We prove that μ(G/N) ≤ μ(G) if G/N has no nontrivial Abelian normal subgroup. There is an as yet unproved conjecture that the same conclusion holds if G/N is Abelian. We investigate the structure of a (hypothetical) minimal counterexample to this conjecture.


Sign in / Sign up

Export Citation Format

Share Document