A parameter choice strategy for a multilevel augmentation method in iterated Lavrentiev regularization

2018 ◽  
Vol 26 (2) ◽  
pp. 153-170 ◽  
Author(s):  
Chunmei Zeng ◽  
Xingjun Luo ◽  
Suhua Yang ◽  
Fanchun Li

AbstractIn this paper we apply the multilevel augmentation method to solve an ill-posed integral equation via the iterated Lavrentiev regularization. This method leads to fast solutions of discrete iterated Lavrentiev regularization. The convergence rates of the iterated Lavrentiev regularization are achieved by using a certain parameter choice strategy. Finally, numerical experiments are given to illustrate the efficiency of the method.

2020 ◽  
Vol 20 (3) ◽  
pp. 555-571
Author(s):  
Suhua Yang ◽  
Xingjun Luo ◽  
Chunmei Zeng ◽  
Zhihai Xu ◽  
Wenyu Hu

AbstractIn this paper, we apply the multilevel augmentation method for solving ill-posed Fredholm integral equations of the first kind via iterated Tikhonov regularization method. The method leads to fast solutions of the discrete regularization methods for the equations. The convergence rates of iterated Tikhonov regularization are achieved by using a modified parameter choice strategy. Finally, numerical experiments are given to illustrate the efficiency of the method.


2003 ◽  
Vol 2003 (39) ◽  
pp. 2487-2499 ◽  
Author(s):  
Santhosh George ◽  
M. Thamban Nair

Recently, Tautenhahn and Hämarik (1999) have considered a monotone rule as a parameter choice strategy for choosing the regularization parameter while considering approximate solution of an ill-posed operator equationTx=y, whereTis a bounded linear operator between Hilbert spaces. Motivated by this, we propose a new discrepancy principle for the simplified regularization, in the setting of Hilbert scales, whenTis a positive and selfadjoint operator. When the datayis known only approximately, our method provides optimal order under certain natural assumptions on the ill-posedness of the equation and smoothness of the solution. The result, in fact, improves an earlier work of the authors (1997).


2018 ◽  
Vol 26 (1) ◽  
pp. 109-120
Author(s):  
Xingjun Luo ◽  
Zhaofu Ouyang ◽  
Chunmei Zeng ◽  
Fanchun Li

AbstractIn this paper, we consider a fast multiscale Galerkin method with compression technique for solving Fredholm integral equations of the first kind via the nonstationary iterated Tikhonov regularization. A modified a posteriori regularization parameter choice strategy is established, which leads to optimal convergence rates.


2009 ◽  
Vol 14 (4) ◽  
pp. 451-466
Author(s):  
Torsten Hein

In this paper we deal with regularization approaches for discretized linear ill‐posed problems in Hilbert spaces. As opposite to other contributions concerning this topic the smoothness of the unknown solution is measured with so‐called approximative source conditions. This idea allows us to generalize known convergence rates results to arbitrary classes of smoothness conditions including logarithmic and general source conditions. The considerations include an a‐posteriori parameter choice strategy for the regularization parameter and the discretization level. Results of one numerical example are presented.


Sign in / Sign up

Export Citation Format

Share Document