scholarly journals An optimal order yielding discrepancy principle for simplified regularization of ill-posed problems in Hilbert scales

2003 ◽  
Vol 2003 (39) ◽  
pp. 2487-2499 ◽  
Author(s):  
Santhosh George ◽  
M. Thamban Nair

Recently, Tautenhahn and Hämarik (1999) have considered a monotone rule as a parameter choice strategy for choosing the regularization parameter while considering approximate solution of an ill-posed operator equationTx=y, whereTis a bounded linear operator between Hilbert spaces. Motivated by this, we propose a new discrepancy principle for the simplified regularization, in the setting of Hilbert scales, whenTis a positive and selfadjoint operator. When the datayis known only approximately, our method provides optimal order under certain natural assumptions on the ill-posedness of the equation and smoothness of the solution. The result, in fact, improves an earlier work of the authors (1997).

2008 ◽  
Vol 8 (3) ◽  
pp. 237-252 ◽  
Author(s):  
U HAMARIK ◽  
R. PALM ◽  
T. RAUS

AbstractWe consider linear ill-posed problems in Hilbert spaces with a noisy right hand side and a given noise level. To solve non-self-adjoint problems by the (it-erated) Tikhonov method, one effective rule for choosing the regularization parameter is the monotone error rule (Tautenhahn and Hamarik, Inverse Problems, 1999, 15, 1487– 1505). In this paper we consider the solution of self-adjoint problems by the (iterated) Lavrentiev method and propose for parameter choice an analog of the monotone error rule. We prove under certain mild assumptions the quasi-optimality of the proposed rule guaranteeing convergence and order optimal error estimates. Numerical examples show for the proposed rule and its modifications much better performance than for the modified discrepancy principle.


2009 ◽  
Vol 14 (4) ◽  
pp. 451-466
Author(s):  
Torsten Hein

In this paper we deal with regularization approaches for discretized linear ill‐posed problems in Hilbert spaces. As opposite to other contributions concerning this topic the smoothness of the unknown solution is measured with so‐called approximative source conditions. This idea allows us to generalize known convergence rates results to arbitrary classes of smoothness conditions including logarithmic and general source conditions. The considerations include an a‐posteriori parameter choice strategy for the regularization parameter and the discretization level. Results of one numerical example are presented.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 331
Author(s):  
Bernd Hofmann ◽  
Christopher Hofmann

This paper deals with the Tikhonov regularization for nonlinear ill-posed operator equations in Hilbert scales with oversmoothing penalties. One focus is on the application of the discrepancy principle for choosing the regularization parameter and its consequences. Numerical case studies are performed in order to complement analytical results concerning the oversmoothing situation. For example, case studies are presented for exact solutions of Hölder type smoothness with a low Hölder exponent. Moreover, the regularization parameter choice using the discrepancy principle, for which rate results are proven in the oversmoothing case in in reference (Hofmann, B.; Mathé, P. Inverse Probl. 2018, 34, 015007) is compared to Hölder type a priori choices. On the other hand, well-known analytical results on the existence and convergence of regularized solutions are summarized and partially augmented. In particular, a sketch for a novel proof to derive Hölder convergence rates in the case of oversmoothing penalties is given, extending ideas from in reference (Hofmann, B.; Plato, R. ETNA. 2020, 93).


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Santhosh George ◽  
C. D. Sreedeep ◽  
Ioannis K. Argyros

Abstract In this paper, we study secant-type iteration for nonlinear ill-posed equations involving 𝑚-accretive mappings in Banach spaces. We prove that the proposed iterative scheme has a convergence order at least 2.20557 using assumptions only on the first Fréchet derivative of the operator. Further, using a general Hölder-type source condition, we obtain an optimal error estimate. We also use the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.


2009 ◽  
Vol 14 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Toomas Raus ◽  
Uno Hämarik

We consider linear ill‐posed problems in Hilbert spaces with noisy right hand side and given noise level. For approximation of the solution the Tikhonov method or the iterated variant of this method may be used. In self‐adjoint problems the Lavrentiev method or its iterated variant are used. For a posteriori choice of the regularization parameter often quasioptimal rules are used which require computing of additionally iterated approximations. In this paper we propose for parameter choice alternative numerical schemes, using instead of additional iterations linear combinations of approximations with different parameters.


2018 ◽  
Vol 26 (2) ◽  
pp. 153-170 ◽  
Author(s):  
Chunmei Zeng ◽  
Xingjun Luo ◽  
Suhua Yang ◽  
Fanchun Li

AbstractIn this paper we apply the multilevel augmentation method to solve an ill-posed integral equation via the iterated Lavrentiev regularization. This method leads to fast solutions of discrete iterated Lavrentiev regularization. The convergence rates of the iterated Lavrentiev regularization are achieved by using a certain parameter choice strategy. Finally, numerical experiments are given to illustrate the efficiency of the method.


Sign in / Sign up

Export Citation Format

Share Document