scholarly journals Research on parallel data processing of data mining platform in the background of cloud computing

2021 ◽  
Vol 30 (1) ◽  
pp. 479-486
Author(s):  
Lingrui Bu ◽  
Hui Zhang ◽  
Haiyan Xing ◽  
Lijun Wu

Abstract The efficient processing of large-scale data has very important practical value. In this study, a data mining platform based on Hadoop distributed file system was designed, and then K-means algorithm was improved with the idea of max-min distance. On Hadoop distributed file system platform, the parallelization was realized by MapReduce. Finally, the data processing effect of the algorithm was analyzed with Iris data set. The results showed that the parallel algorithm divided more correct samples than the traditional algorithm; in the single-machine environment, the parallel algorithm ran longer; in the face of large data sets, the traditional algorithm had insufficient memory, but the parallel algorithm completed the calculation task; the acceleration ratio of the parallel algorithm was raised with the expansion of cluster size and data set size, showing a good parallel effect. The experimental results verifies the reliability of parallel algorithm in big data processing, which makes some contributions to further improve the efficiency of data mining.

2018 ◽  
Vol 3 (1) ◽  
pp. 49-60
Author(s):  
M. Elshayeb ◽  
◽  
Leelavathi Rajamanickam ◽  

Big Data refers to large-scale information management and analysis technologies that exceed the capability of traditional data processing technologies. In order to analyse complex data and to identify patterns it is very important to securely store, manage, and share large amounts of complex data. In recent years an increasing of database size according to the various forms (text, images and videos), in huge volumes and with high velocity, the services issues that use internet and desires big data come to leading edge (data-intensive services), (HDFS) Apache’s Hadoop distributed file system is in progress as outstanding software component for cloud computing joint with integrated pieces such as MapReduce. GoogleMapReduce implemented an open source which is Hadoop, having a distributed file system, present to software programmers the perception of the map and reduce. The research shows the security approaches for Big Data Hadoop distributed file system and the best security solution, also this research will help business by big data visualization which will help in better data analysis. In today’s data-centric world, big-data processing and analytics have become critical to most enterprise and government applications.


2016 ◽  
pp. 1220-1243
Author(s):  
Ilias K. Savvas ◽  
Georgia N. Sofianidou ◽  
M-Tahar Kechadi

Big data refers to data sets whose size is beyond the capabilities of most current hardware and software technologies. The Apache Hadoop software library is a framework for distributed processing of large data sets, while HDFS is a distributed file system that provides high-throughput access to data-driven applications, and MapReduce is software framework for distributed computing of large data sets. Huge collections of raw data require fast and accurate mining processes in order to extract useful knowledge. One of the most popular techniques of data mining is the K-means clustering algorithm. In this study, the authors develop a distributed version of the K-means algorithm using the MapReduce framework on the Hadoop Distributed File System. The theoretical and experimental results of the technique prove its efficiency; thus, HDFS and MapReduce can apply to big data with very promising results.


2019 ◽  
Vol 16 (9) ◽  
pp. 3824-3829
Author(s):  
Deepak Ahlawat ◽  
Deepali Gupta

Due to advancement in the technological world, there is a great surge in data. The main sources of generating such a large amount of data are social websites, internet sites etc. The large data files are combined together to create a big data architecture. Managing the data file in such a large volume is not easy. Therefore, modern techniques are developed to manage bulk data. To arrange and utilize such big data, Hadoop Distributed File System (HDFS) architecture from Hadoop was presented in the early stage of 2015. This architecture is used when traditional methods are insufficient to manage the data. In this paper, a novel clustering algorithm is implemented to manage a large amount of data. The concepts and frames of Big Data are studied. A novel algorithm is developed using the K means and cosine-based similarity clustering in this paper. The developed clustering algorithm is evaluated using the precision and recall parameters. The prominent results are obtained which successfully manages the big data issue.


The study of Hadoop Distributed File System (HDFS) and Map Reduce (MR) are the key aspects of the Hadoop framework. The big data scenarios like Face Book (FB) data processing or the twitter analytics such as storing the tweets and processing the tweets is other scenario of big data which can depends on Hadoop framework to perform the storage and processing through which further analytics can be done. The point here is the usage of space and time in the processing of the above-mentioned huge amounts of the data definitely leads to higher amounts of space and time consumption of the Hadoop framework. The problem here is usage of huge amounts of the space and at the same time the processing time is also high which need to be reduced so as to get the fastest response from the framework. The attempt is important as all the other eco system tools also depends on HDFS and MR so as to perform the data storage and processing of the data and alternative architecture so as to improve the usage of the space and effective utilization of the resources so as to reduce the time requirements of the framework. The outcome of the work is faster data processing and less space utilization of the framework in the processing of MR along with other eco system tools like Hive, Flume, Sqoop and Pig Latin. The work is proposing an alternative framework of the HDFS and MR and the name we are assigning is Unified Space Allocation and Data Processing with Metadata based Distributed File System (USAMDFS).


2020 ◽  
Author(s):  
Isha Sood ◽  
Varsha Sharma

Essentially, data mining concerns the computation of data and the identification of patterns and trends in the information so that we might decide or judge. Data mining concepts have been in use for years, but with the emergence of big data, they are even more common. In particular, the scalable mining of such large data sets is a difficult issue that has attached several recent findings. A few of these recent works use the MapReduce methodology to construct data mining models across the data set. In this article, we examine current approaches to large-scale data mining and compare their output to the MapReduce model. Based on our research, a system for data mining that combines MapReduce and sampling is implemented and addressed


Author(s):  
Ilias K. Savvas ◽  
Georgia N. Sofianidou ◽  
M-Tahar Kechadi

Big data refers to data sets whose size is beyond the capabilities of most current hardware and software technologies. The Apache Hadoop software library is a framework for distributed processing of large data sets, while HDFS is a distributed file system that provides high-throughput access to data-driven applications, and MapReduce is software framework for distributed computing of large data sets. Huge collections of raw data require fast and accurate mining processes in order to extract useful knowledge. One of the most popular techniques of data mining is the K-means clustering algorithm. In this study, the authors develop a distributed version of the K-means algorithm using the MapReduce framework on the Hadoop Distributed File System. The theoretical and experimental results of the technique prove its efficiency; thus, HDFS and MapReduce can apply to big data with very promising results.


2010 ◽  
Vol 30 (8) ◽  
pp. 2060-2065 ◽  
Author(s):  
Ning CAO ◽  
Zhong-hai WU ◽  
Hong-zhi LIU ◽  
Qi-xun ZHANG

Sign in / Sign up

Export Citation Format

Share Document