A Newton-like method for computing deflating subspaces

2015 ◽  
Vol 23 (4) ◽  
Author(s):  
Kirill V. Demyanko ◽  
Yuri M. Nechepurenko ◽  
Miloud Sadkane

AbstractThis work is devoted to computations of deflating subspaces associated with separated groups of finite eigenvalues near specified shifts of large regular matrix pencils. The proposed method is a combination of inexact inverse subspace iteration and Newton’s method. The first one is slow but reliably convergent starting with almost an arbitrary initial subspace and it is used as a preprocessing to obtain a good initial guess for the second method which is fast but only locally convergent. The Newton method necessitates at each iteration the solution of a generalized Sylvester equation and for this task an iterative algorithm based on the preconditioned GMRES method is devised. Numerical properties of the proposed combination are illustrated with a typical hydrodynamic stability problem.

2017 ◽  
Vol 94 (10) ◽  
pp. 2122-2144 ◽  
Author(s):  
Jiaquan Gao ◽  
Kesong Wu ◽  
Yushun Wang ◽  
Panpan Qi ◽  
Guixia He

2020 ◽  
Vol 589 ◽  
pp. 201-221
Author(s):  
Itziar Baragaña ◽  
Alicia Roca

Author(s):  
Kirill V. Demyanko ◽  
Yuri M. Nechepurenko ◽  
Miloud Sadkane

AbstractThis work is devoted to computations of invariant pairs associated with separated groups of finite eigenvalues of large regular non-linear matrix pencils. It is proposed to combine the method of successive linear problems with a Newton-type method designed for partial linear eigenproblems and a deflation procedure. This combination is illustrated with a typical hydrodynamic spatial stability problem.


Sign in / Sign up

Export Citation Format

Share Document