spatial stability
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 31)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol 29 (1) ◽  
pp. 1-39
Author(s):  
Katherine Fennedy ◽  
Angad Srivastava ◽  
Sylvain Malacria ◽  
Simon T. Perrault

We advocate for the usage of hotkeys on touch-based devices by capitalising on soft keyboards through four studies. First, we evaluated visual designs and recommended icons with command names for novices while letters with command names for experts. Second, we investigated the discoverability by asking crowdworkers to use our prototype, with some tasks only doable upon successfully discovering the technique. Discovery rates were high regardless of conditions that vary the familiarity and saliency of modifier keys. However, familiarity with desktop hotkeys boosted discoverability. Our third study focused on how prior knowledge of hotkeys could be leveraged and resulted in a 5% selection time improvement and identified the role of spatial memory in retention. Finally, we compared our soft keyboard layout with a grid layout similar to FastTap. The latter offered a 12–16% gain on selection speed, but at a high cost in terms of screen estate and low spatial stability.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8396
Author(s):  
Ryoto Akiyama ◽  
Naoto Noguchi ◽  
Ken Kondo ◽  
Koji Tanaka ◽  
Bumsuk Lee

The purpose of this study was to examine aging and bimanual effects on finger spatial stability during precision grip. Twenty-one older and 21 younger adults performed precision grip tasks consisting of a single task (grip and lift an object with the thumb and index finger) and a dual task (the grip-lifting task with one hand and a peg board task with the other hand). The center of pressure (COP) trajectory and the grip force were evaluated using a pressure sensor with a high spatial resolution. In the COP trajectory, the main effects of age for the thumb (F1,140 = 46.17, p < 0.01) and index finger (F1,140 = 22.14, p < 0.01) and task difficulty for the thumb (F1,140 = 6.47, p = 0.01) were significant based on ANCOVA. The COP trajectory was statistically decreased in the older adults. The COP trajectory was also decreased in the dual task, regardless of age. The results suggest the existence of a safety strategy to prioritize the spatial stability in the elderly group and in the dual task. This study provides new insights into the interpretation of the COP trajectory.


Cognition ◽  
2021 ◽  
Vol 214 ◽  
pp. 104802
Author(s):  
Matthew G. Buckley ◽  
Joe M. Austen ◽  
Liam A.M. Myles ◽  
Shamus Smith ◽  
Niklas Ihssen ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zbigniew Rarata

Purpose The purpose of this paper is to investigate airfoil’s tonal noise reduction mechanism when deploying surface irregularities, such as surface waviness by means of spatial stability analyses. Design/methodology/approach Flow field calculations over smooth and wavy-surface NACA 0012 airfoils at 2° angle of attack and at Reynolds number of 200,000 are performed using the large eddy simulation (LES) approach. Three geometrical configurations are considered: a smooth NACA 0012 airfoil, wavy surface on the suction side (SS) and wavy surface on the pressure side (PS). The spatial stability analyses using the LES-generated flow fields are conducted and validated against the Orr-Sommerfeld stability analysis for the smooth airfoil configuration. Findings The spatial stability analyses show that inclusion of the wavy-type modification on the SS of the airfoil does not lead to altering of the acoustic feedback loop mechanism, with respect to the mechanism observed for the smooth airfoil configuration. In contrast, applying the surface modifications to the airfoil PS leads to a significant reduction of the amplification range of disturbances in the vicinity of the trailing edge for the frequency of the acoustic feedback loop mechanism. Practical implications The spatial analyses using, for example, LES-generated flow fields can be widely used to determine acoustic sources and associated distributions of amplifications for a wide range of applications in the aeroacoustics. Originality/value The spatial stability analysis approach based on flow fields computed a priori using the LES method has been introduced, validated and used to determine behaviour of the acoustic feedback loop when accurate reconstruction of geometry effects is required.


2021 ◽  
Vol 780 ◽  
pp. 146674
Author(s):  
Wen-Qiang Gao ◽  
Xiang-Dong Lei ◽  
Mao-Wei Liang ◽  
Markku Larjavaara ◽  
Yu-Tang Li ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 85-90
Author(s):  
Andrey Boyko ◽  
Ruben Girgidov

This paper describes the application of a swarm engineering methodology that allows creating hexagonal UAV grids with predefined properties. It is achieved by imitation of physics processes that demonstrate conditions for stabilizing the above-mention hexagon grids of UAV swarm. We propose a simple combination of software and hardware applications that create a more efficient practical solution.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. e1009533
Author(s):  
Clement Champion ◽  
Jasper Lamers ◽  
Victor Arnold Shivas Jones ◽  
Giulia Morieri ◽  
Suvi Honkanen ◽  
...  

Tip-growth is a mode of polarized cell expansion where incorporation of new membrane and wall is stably restricted to a single, small domain of the cell surface resulting in the formation of a tubular projection that extends away from the body of the cell. The organization of the microtubule cytoskeleton is conserved among tip-growing cells of land plants: bundles of microtubules run longitudinally along the non-growing shank and a network of fine microtubules grow into the apical dome where growth occurs. Together, these microtubule networks control the stable positioning of the growth site at the cell surface. This conserved dynamic organization is required for the spatial stability of tip-growth, as demonstrated by the formation of sinuous tip-growing cells upon treatment with microtubule-stabilizing or microtubule-destabilizing drugs. Microtubule associated proteins (MAPs) that either stabilize or destabilize microtubule networks are required for the maintenance of stable tip-growth in root hairs of flowering plants. NIMA RELATED KINASE (NEK) is a MAP that destabilizes microtubule growing ends in the apical dome of tip-growing rhizoid cells in the liverwort Marchantia polymorpha. We hypothesized that both microtubule stabilizing and destabilizing MAPs are required for the maintenance of the stable tip-growth in liverworts. To identify genes encoding microtubule-stabilizing and microtubule-destabilizing activities we generated 120,000 UV-B mutagenized and 336,000 T-DNA transformed Marchantia polymorpha plants and screened for defective rhizoid phenotypes. We identified 119 mutants and retained 30 mutants in which the sinuous rhizoid phenotype was inherited. The 30 mutants were classified into at least 4 linkage groups. Characterisation of two of the linkage groups showed that MAP genes–WAVE DAMPENED2-LIKE (WDL) and NIMA-RELATED KINASE (NEK)–are required to stabilize the site of tip growth in elongating rhizoids. Furthermore, we show that MpWDL is required for the formation of a bundled array of parallel and longitudinally orientated microtubules in the non-growing shank of rhizoids where MpWDL-YFP localizes to microtubule bundles. We propose a model where the opposite functions of MpWDL and MpNEK on microtubule bundling are spatially separated and promote tip-growth spatial stability.


Author(s):  
Michael Pope ◽  
Pawel Kuklik ◽  
Andre Briosa e Gala ◽  
Milena Leo ◽  
Michael Mahmoudi ◽  
...  

Background Charge density mapping of atrial fibrillation (AF) reveals dynamic patterns of localised rotational activation (LRA), irregular activation (LIA) and focal firing (FF). Their spatial stability, conduction characteristics and the optimal duration of mapping required to reveal these phenomena and has not been explored. Methods Bi-atrial mapping of AF propagation was undertaken and variability of activation patterns quantified up to a duration of 30-seconds(s). The frequency of each pattern was quantified at each vertex of the chamber over 2 separate 30s recordings prior to ablation and R2 calculated to quantify spatial stability. Regions with the highest frequency were identified at increasing time durations and compared to the result over 30s using Cohen’s kappa. Properties of regions with the most stable patterns were assessed during sinus rhythm and extrastimulus pacing. Results In twenty-one patients, 62 paired LA and RA maps were obtained. LIA was highly spatially stable with R2 between maps of 0.83(0.71-0.88) compared to 0.39(0.24-0.57) and 0.64(0.54-0.73) for LRA and FF, respectively. LIA was also most temporally stable with a kappa of >0.8 reached by 12s. LRA showed greatest variability with kappa>0.8 only after 22s. Regions of LIA were of normal voltage amplitude (1.09mv) but showed increased conduction heterogeneity during extrastimulus pacing (p=0.0480). Conclusion Irregular activation patterns characterised by changing wavefront direction are temporally and spatially stable in contrast with rotational patterns that are transient with least spatial stability. Focal activation appears of intermediate stability. Regions of LIA show increased heterogeneity following extrastimulus pacing and may represent fixed anatomical substrate.


Sign in / Sign up

Export Citation Format

Share Document