fixed rank
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Indranil Biswas ◽  
Francesco Bottacin ◽  
Tomás L. Gómez

AbstractLet X be a complex irreducible smooth projective curve, and let $${{\mathbb {L}}}$$ L be an algebraic line bundle on X with a nonzero section $$\sigma _0$$ σ 0 . Let $${\mathcal {M}}$$ M denote the moduli space of stable Hitchin pairs $$(E,\, \theta )$$ ( E , θ ) , where E is an algebraic vector bundle on X of fixed rank r and degree $$\delta $$ δ , and $$\theta \, \in \, H^0(X,\, {\mathcal {E}nd}(E)\otimes K_X\otimes {{\mathbb {L}}})$$ θ ∈ H 0 ( X , E n d ( E ) ⊗ K X ⊗ L ) . Associating to every stable Hitchin pair its spectral data, an isomorphism of $${\mathcal {M}}$$ M with a moduli space $${\mathcal {P}}$$ P of stable sheaves of pure dimension one on the total space of $$K_X\otimes {{\mathbb {L}}}$$ K X ⊗ L is obtained. Both the moduli spaces $${\mathcal {P}}$$ P and $${\mathcal {M}}$$ M are equipped with algebraic Poisson structures, which are constructed using $$\sigma _0$$ σ 0 . Here we prove that the above isomorphism between $${\mathcal {P}}$$ P and $${\mathcal {M}}$$ M preserves the Poisson structures.


Author(s):  
Bin Gao ◽  
P.-A. Absil

AbstractThe low-rank matrix completion problem can be solved by Riemannian optimization on a fixed-rank manifold. However, a drawback of the known approaches is that the rank parameter has to be fixed a priori. In this paper, we consider the optimization problem on the set of bounded-rank matrices. We propose a Riemannian rank-adaptive method, which consists of fixed-rank optimization, rank increase step and rank reduction step. We explore its performance applied to the low-rank matrix completion problem. Numerical experiments on synthetic and real-world datasets illustrate that the proposed rank-adaptive method compares favorably with state-of-the-art algorithms. In addition, it shows that one can incorporate each aspect of this rank-adaptive framework separately into existing algorithms for the purpose of improving performance.


2021 ◽  
Author(s):  
Tucker Carrington ◽  
Sangeeth Kallullathil

Present day computers do not have enough memory to store the high-dimensional tensors required when using a direct product basis to compute vibrational energy levels of a polyatomic molecule with more than about 5 atoms. One way to deal with this problem is to represent tensors using a tensor format. In this paper, we use CP format. Energy levels are computed by building a basis from vectors obtained by solving linear equations. The method can be thought of as a CP realization of a block inverse iteration method with multiple shifts. The CP rank of the tensors is fixed and the linear equations are solved with an Alternating Least Squares method. There is no need for rank reduction, no need for orthogonalization, and tensors with rank larger than the fixed rank used to solve the linear equations are never generated. The ideas are tested by computing vibrational energy levels of a 64-D bilinearly coupled model Hamiltonian and of acetonitrile(12-D).


Author(s):  
Jun Zhou ◽  
Longfei Li ◽  
Ziqi Liu ◽  
Chaochao Chen

Recently, Factorization Machine (FM) has become more and more popular for recommendation systems due to its effectiveness in finding informative interactions between features. Usually, the weights for the interactions are learned as a low rank weight matrix, which is formulated as an inner product of two low rank matrices. This low rank matrix can help improve the generalization ability of Factorization Machine. However, to choose the rank properly, it usually needs to run the algorithm for many times using different ranks, which clearly is inefficient for some large-scale datasets. To alleviate this issue, we propose an Adaptive Boosting framework of Factorization Machine (AdaFM), which can adaptively search for proper ranks for different datasets without re-training. Instead of using a fixed rank for FM, the proposed algorithm will gradually increase its rank according to its performance until the performance does not grow. Extensive experiments are conducted to validate the proposed method on multiple large-scale datasets. The experimental results demonstrate that the proposed method can be more effective than the state-of-the-art Factorization Machines.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1669
Author(s):  
Marie Billaud-Friess ◽  
Antonio Falcó ◽  
Anthony Nouy

In this paper, we introduce a new geometric description of the manifolds of matrices of fixed rank. The starting point is a geometric description of the Grassmann manifold Gr(Rk) of linear subspaces of dimension r<k in Rk, which avoids the use of equivalence classes. The set Gr(Rk) is equipped with an atlas, which provides it with the structure of an analytic manifold modeled on R(k−r)×r. Then, we define an atlas for the set Mr(Rk×r) of full rank matrices and prove that the resulting manifold is an analytic principal bundle with base Gr(Rk) and typical fibre GLr, the general linear group of invertible matrices in Rk×k. Finally, we define an atlas for the set Mr(Rn×m) of non-full rank matrices and prove that the resulting manifold is an analytic principal bundle with base Gr(Rn)×Gr(Rm) and typical fibre GLr. The atlas of Mr(Rn×m) is indexed on the manifold itself, which allows a natural definition of a neighbourhood for a given matrix, this neighbourhood being proved to possess the structure of a Lie group. Moreover, the set Mr(Rn×m) equipped with the topology induced by the atlas is proven to be an embedded submanifold of the matrix space Rn×m equipped with the subspace topology. The proposed geometric description then results in a description of the matrix space Rn×m, seen as the union of manifolds Mr(Rn×m), as an analytic manifold equipped with a topology for which the matrix rank is a continuous map.


2021 ◽  
Vol 7 (7) ◽  
pp. 109
Author(s):  
Abdessamad Youssfi Alaoui ◽  
Youness Tabii ◽  
Rachid Oulad Haj Thami ◽  
Mohamed Daoudi ◽  
Stefano Berretti ◽  
...  

Falls are one of the most critical health care risks for elderly people, being, in some adverse circumstances, an indirect cause of death. Furthermore, demographic forecasts for the future show a growing elderly population worldwide. In this context, models for automatic fall detection and prediction are of paramount relevance, especially AI applications that use ambient, sensors or computer vision. In this paper, we present an approach for fall detection using computer vision techniques. Video sequences of a person in a closed environment are used as inputs to our algorithm. In our approach, we first apply the V2V-PoseNet model to detect 2D body skeleton in every frame. Specifically, our approach involves four steps: (1) the body skeleton is detected by V2V-PoseNet in each frame; (2) joints of skeleton are first mapped into the Riemannian manifold of positive semidefinite matrices of fixed-rank 2 to build time-parameterized trajectories; (3) a temporal warping is performed on the trajectories, providing a (dis-)similarity measure between them; (4) finally, a pairwise proximity function SVM is used to classify them into fall or non-fall, incorporating the (dis-)similarity measure into the kernel function. We evaluated our approach on two publicly available datasets URFD and Charfi. The results of the proposed approach are competitive with respect to state-of-the-art methods, while only involving 2D body skeletons.


Author(s):  
Luis Ferroni

AbstractWe provide a formula for the Ehrhart polynomial of the connected matroid of size n and rank k with the least number of bases, also known as a minimal matroid. We prove that their polytopes are Ehrhart positive and $$h^*$$ h ∗ -real-rooted (and hence unimodal). We prove that the operation of circuit-hyperplane relaxation relates minimal matroids and matroid polytopes subdivisions, and also preserves Ehrhart positivity. We state two conjectures: that indeed all matroids are $$h^*$$ h ∗ -real-rooted, and that the coefficients of the Ehrhart polynomial of a connected matroid of fixed rank and cardinality are bounded by those of the corresponding minimal matroid and the corresponding uniform matroid.


2021 ◽  
pp. 2150041
Author(s):  
Suratno Basu ◽  
Sourav Das

The moduli space of Gieseker vector bundles is a compactification of moduli of vector bundles on a nodal curve. This moduli space has only normal-crossing singularities and it provides flat degeneration of the moduli of vector bundles over a smooth projective curve. We prove a Torelli type theorem for a nodal curve using the moduli space of stable Gieseker vector bundles of fixed rank (strictly greater than [Formula: see text]) and fixed degree such that rank and degree are co-prime.


Author(s):  
Enrico Le Donne ◽  
Roger Zuest

We formalize the notion of limit of an inverse system of metric spaces with $1$-Lipschitz projections having unbounded fibers. The construction is applied to the sequence of free Carnot groups of fixed rank $n$ and increasing step. In this case, the limit space is in correspondence with the space of signatures of rectifiable paths in $\mathbb R^n$, as introduced by Chen. Hambly-Lyons's result on the uniqueness of signature implies that this space is a geodesic metric tree. As a particular consequence we deduce that every path in $\mathbb R^n$ can be approximated by projections of some geodesics in some Carnot group of rank $n$, giving an evidence that the complexity of sub-Riemannian geodesics increases with the step.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Michał Lasoń

AbstractIn 1980 White conjectured that every element of the toric ideal of a matroid is generated by quadratic binomials corresponding to symmetric exchanges. We prove White’s conjecture for high degrees with respect to the rank. This extends our result (Lasoń and Michałek in Adv Math 259:1–12, 2014) confirming White’s conjecture ‘up to saturation’. Furthermore, we study degrees of Gröbner bases and Betti tables of the toric ideals of matroids of a fixed rank.


Sign in / Sign up

Export Citation Format

Share Document