On the solutions of a second-order difference equation in terms of generalized Padovan sequences

2018 ◽  
Vol 68 (3) ◽  
pp. 625-638 ◽  
Author(s):  
Yacine Halim ◽  
Julius Fergy T. Rabago

AbstractThis paper deals with the solution, stability character and asymptotic behavior of the rational difference equation$$\begin{array}{} \displaystyle x_{n+1}=\frac{\alpha x_{n-1}+\beta}{ \gamma x_{n}x_{n-1}},\qquad n \in \mathbb{N}_{0}, \end{array}$$where ℕ0= ℕ ∪ {0},α,β,γ∈ ℝ+, and the initial conditionsx–1andx0are non zero real numbers such that their solutions are associated to generalized Padovan numbers. Also, we investigate the two-dimensional case of the this equation given by$$\begin{array}{} \displaystyle x_{n+1} = \frac{\alpha x_{n-1} + \beta}{\gamma y_n x_{n-1}}, \qquad y_{n+1} = \frac{\alpha y_{n-1} +\beta}{\gamma x_n y_{n-1}} ,\qquad n\in \mathbb{N}_0. \end{array}$$

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Emin Bešo ◽  
Senada Kalabušić ◽  
Naida Mujić ◽  
Esmir Pilav

AbstractWe consider the second-order rational difference equation $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$xn+1=γ+δxnxn−12, where γ, δ are positive real numbers and the initial conditions $x_{-1}$x−1 and $x_{0}$x0 are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
S. Jašarević Hrustić ◽  
M. R. S. Kulenović ◽  
M. Nurkanović

We present a complete local dynamics and investigate the global dynamics of the following second-order difference equation:xn+1=Axn2+Exn-1+F/axn2+exn-1+f,  n=0,1,2,…, where the parametersA,E,F,a,e, andfare nonnegative numbers with conditionA+E+F>0,a+e+f>0, and the initial conditionsx-1,x0are arbitrary nonnegative numbers such thataxn2+exn-1+f>0,  n=0,1,2,….


Filomat ◽  
2018 ◽  
Vol 32 (18) ◽  
pp. 6203-6210
Author(s):  
Vahidin Hadziabdic ◽  
Midhat Mehuljic ◽  
Jasmin Bektesevic ◽  
Naida Mujic

In this paper we will present the Julia set and the global behavior of a quadratic second order difference equation of type xn+1 = axnxn-1 + ax2n-1 + bxn-1 where a > 0 and 0 ? b < 1 with non-negative initial conditions.


2020 ◽  
Vol 27 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Raafat Abo-Zeid

AbstractIn this paper, we determine the forbidden set, introduce an explicit formula for the solutions and discuss the global behavior of solutions of the difference equationx_{n+1}=\frac{ax_{n}x_{n-k}}{bx_{n}-cx_{n-k-1}},\quad n=0,1,\ldots,where{a,b,c}are positive real numbers and the initial conditions{x_{-k-1},x_{-k},\ldots,x_{-1},x_{0}}are real numbers. We show that when{a=b=c}, the behavior of the solutions depends on whetherkis even or odd.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Toufik Khyat ◽  
M. R. S. Kulenović

In this paper, certain dynamic scenarios for general competitive maps in the plane are presented and applied to some cases of second-order difference equation xn+1=fxn,xn−1, n=0,1,…, where f is decreasing in the variable xn and increasing in the variable xn−1. As a case study, we use the difference equation xn+1=xn−12/cxn−12+dxn+f, n=0,1,…, where the initial conditions x−1,x0≥0 and the parameters satisfy c,d,f>0. In this special case, we characterize completely the global dynamics of this equation by finding the basins of attraction of its equilibria and periodic solutions. We describe the global dynamics as a sequence of global transcritical or period-doubling bifurcations.


2018 ◽  
Vol 14 (2) ◽  
pp. 7806-7811
Author(s):  
Jai Kumar S ◽  
K. Alagesan

  The author presents some sufficient conditions for second order difference equation with damping term of the form                                                                             ^(an ^(xn + cxn-k)) + pn^xn + qnf(xn+1-l) = 0 An example is given to illustrate the main results. 2010 AMS Subject Classification: 39A11 Keywords and Phrases: Second order, difference equation, damping term.


Sign in / Sign up

Export Citation Format

Share Document