Singlet oxygen and natural substrates: functional polyunsaturated models for the photooxidative degradation of carotenoids

2015 ◽  
Vol 87 (7) ◽  
pp. 639-647 ◽  
Author(s):  
Axel G. Griesbeck ◽  
Margarethe Kleczka ◽  
Alan de Kiff ◽  
Moritz Vollmer ◽  
Angelika Eske ◽  
...  

AbstractThe primary chemical reactions of singlet molecular oxygen with polyunsaturated carotenoids are the focus of this research report. Model compounds that exhibit electronic properties and substituent pattern similar to natural carotenes, xanthophylls or apocarotenoids, respectively, were investigated with regard to photooxygenation reactivity. For dienes and trienes as substrates, high tandem reactivity was observed and hydroperoxy-endoperoxides were isolated as the secondary products of singlet oxygen reaction. The electronic gem-effect on the regioselectivity of the ene reaction is conserved also in vinylogous positions and thus appears to originate from a radical-stabilizing effect. In an attempt to combine different peroxide groups derived from natural products as a tool for new pharmaceutically active products, a dyade synthesis of an artemisinine-safranol with subsequent singlet oxygen addition was realized.

Author(s):  
Kurt Mikkelsen ◽  
Malte Jespersen ◽  
Matthew Johnson ◽  
Solvejg Jørgensen ◽  
Emma Petersen-Sonn

Theoretical calculations involving singlet molecular oxygen (O2(1g)) are challeng- ing due to their inherent multi-reference character. We have tested the quality of re- stricted and unrestricted DFT geometries obtained for the reaction between singlet oxy- gen and a series of alkenes (propene, 2-methylpropene, trans-butene, 2-methylbutene and 2,3-dimethylbutene) which are able to follow the ene-reaction. The electronic en- ergy of the obtained geometries are rened using 3 dierent methods which account for the multi-reference character of singlet oxygen. The results show that the mechanism for the ene-reaction is qualitatively dierent when either one or two allylic-hydrogen groups are available for the reaction. When one allylic-hydrogen group is available the UDFT calculations predict a stepwise addition forming a biradical intermediate, while, the RDFT calculations predict a concerted reaction where both hydrogen abstrac- tion and oxygen addition occur simultaneously. When two allylic-hydrogen groups are available for the reaction then UDFT and RDFT predict the same reaction mechanism, namely that the reaction occurs as a stepwise addition without a stable intermediate between the two transition states. The calculated rate constants are in reasonable agreement with experimental data, except for trans-butene where the calculated rate constant is three orders of magnitude lower than the experimental one. In conclusion we nd that the simple bypassing scheme tested in this paper is a robust approach for calculations of reaction involving singlet oxygen in the limit that the transition state processes low multi-reference character. 2


2005 ◽  
Vol 77 (6) ◽  
pp. 1059-1074 ◽  
Author(s):  
Axel G. Griesbeck ◽  
Tamer T. El-Idreesy ◽  
Anna Bartoschek

Photooxygenation involving the first excited singlet state of molecular oxygen is a versatile method for the generation of a multitude of oxy-functionalized target molecules often with high regio- and stereoselectivities. The efficiency of singlet-oxygen reactions is largely dependent on the nonradiative deactivation paths, mainly induced by the solvent and the substrate intrinsically. The intrinsic (physical) quenching properties as well as the selectivity-determining factors of the (chemical) quenching can be modified by adjusting the microenvironment of the reactive substrate. Tetraarylporphyrins or protoporphyrin IX were embedded in polystyrene (PS) beads and in polymer films or covalently linked into PS during emulsion polymerization. These polymer matrices are suitable for a broad variety of (solvent-free) photooxygenation reactions. One specific example discussed in detail is the ene reaction of singlet oxygen with chiral allylic alcohols yielding unsaturated β-hydroperoxy alcohols in (threo) diastereoselectivities, which depended on the polarity and hydrogen-bonding capacity of the polymer matrix. These products were applied for the synthesis of mono- and spirobicyclic 1,2,4-trioxanes, molecules that showed moderate to high antimalarial properties. Subsequent structure optimization resulted in in vitro activities that surpassed that of the naturally occurring sesquiterpene-peroxide artemisinin.


1994 ◽  
Vol 59 (12) ◽  
pp. 3335-3340 ◽  
Author(s):  
Waldemar Adam ◽  
Markus J. Richter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document