molecular oxygen
Recently Published Documents


TOTAL DOCUMENTS

6298
(FIVE YEARS 522)

H-INDEX

139
(FIVE YEARS 17)

2022 ◽  
Author(s):  
Sergei Gavryushov ◽  
Nikolay Kuzmich ◽  
Konstantin Polyakov

Laccases are enzymes catalyzing oxidation of a wide range of organic and inorganic substrates accompanied by molecular oxygen reduction to water. Previously studies of oxygen reduction by laccases have recently been reported. They were based on single-crystal serial X-ray crystallography with increasing absorption doses at subatomic resolution, As a result, coordinates of all non-hydrogen atoms of the active site have been determined with high precision for both oxidized and reduced states of the enzyme. Those data can be used to clarify the mechanism of molecular oxygen reduction by laccases. However, the X-ray data lack information about protonation states of the oxygen ligands involved. Applying quantum mechanical calculations, in the present work protonation of oxygen ligands in the active site of laccase was determined for both reduced and oxidized states of the enzyme (the stable states observed in experiments at reduction of molecular oxygen in laccase). The high precision of X-ray-determined atom coordinates allowed us to simplify preliminary calculations of molecular mechanics for models used in the quantum mechanical calculations.


2022 ◽  
Author(s):  
Irmak Taylan Karpuzcu ◽  
Matthew P. Jouffray ◽  
Deborah A. Levin

Author(s):  
Gui Chen ◽  
Kuiyi You ◽  
Xiangbo Gong ◽  
Fangfang Zhao ◽  
Zhenpan Chen ◽  
...  

An efficient method for highly selective preparation of the high value-added benzyl alcohol (BOL) and benzaldehyde (BAL) from liquid-phase catalytic oxidation of toluene with molecular oxygen over CeO2-MnOx composite oxides...


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Alice J. C. Wahart ◽  
Jessica Staniland ◽  
Gavin J. Miller ◽  
Sebastian C. Cosgrove

Oxidation is one of the most important processes used by the chemical industry. However, many of the methods that are used pose significant sustainability and environmental issues. Biocatalytic oxidation offers an alternative to these methods, with a now significant enzymatic oxidation toolbox on offer to chemists. Oxidases are one of these options, and as they only depend on molecular oxygen as a terminal oxidant offer perfect atom economy alongside the selectivity benefits afforded by enzymes. This review will focus on examples of oxidase biocatalysts that have been used for the sustainable production of important molecules and highlight some important processes that have been significantly improved through the use of oxidases. It will also consider emerging classes of oxidases, and how they might fit in a future biorefinery approach for the sustainable production of important chemicals.


Author(s):  
Alan Hoskinson ◽  
Wilson Terry Rawlins ◽  
Kristin L Galbally-Kinney ◽  
Emily Gong ◽  
Jeff A Hopwood

Abstract We have used arrays of microwave-generated microplasmas operating at atmospheric pressure to generate high concentrations of singlet molecular oxygen, O2(1Δg), which is of interest for biomedical applications. The discharge is sustained by a pair of microstrip-based microwave resonator arrays which force helium/oxygen gas mixtures through a narrow plasma channel. We have demonstrated the efficacy of both NO and less-hazardous N2O additives for suppression of ozone and associated enhancement of the O2(1Δg) yield. Quenching of O2(1Δg) by ozone is sufficiently suppressed such that quenching by ground state molecular oxygen becomes the dominant loss mechanism in the post-discharge outflow. We verified the absence of other significant gas-phase quenching mechanisms by measuring the O2(1Δg) decay along a quartz flow tube. These measurements indicated a first-order rate constant of (1.2 ± 0.3) × 10-24 m3 s−1, slightly slower than but consistent with prior measurements of singlet oxygen quenching on ground state oxygen. The discharge-initiated reaction mechanisms and data analysis are discussed in terms of a chemical kinetics model of the system.


Sign in / Sign up

Export Citation Format

Share Document