singlet oxygen
Recently Published Documents


TOTAL DOCUMENTS

6468
(FIVE YEARS 1011)

H-INDEX

150
(FIVE YEARS 24)

Photochem ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 58-68
Author(s):  
Anthony T. Rice ◽  
Glenn P. A. Yap ◽  
Joel Rosenthal

Photodynamic therapy (PDT) is a promising treatment option that ablates cancerous cells and tumors via photoinduced sensitization of singlet oxygen. Over the last few decades, much work has been devoted to the development of new photochemotherapeutic agents for PDT. A wide variety of macrocyclic tetrapyrrole based photosensitizers have been designed, synthesized and characterized as PDT agents. Many of these complexes have a variety of issues that pose a barrier to their use in humans, including biocompatibility, inherent toxicity, and synthetic hurdles. We have developed a non-traditional, non-cyclic, and non-aromatic tetrapyrrole ligand scaffold, called the biladiene (DMBil1), as an alternative to these traditional photosensitizer complexes. Upon insertion of a heavy atom such as Pd2+ center, Pd[DMBil1] generates singlet oxygen in substantial yields (ΦΔ = 0.54, λexc = 500 nm) when irradiated with visible light. To extend the absorption profile for Pd[DMBil1] deeper into the phototherapeutic window, the tetrapyrrole was conjugated with alkynyl phenyl groups at the 2- and 18-positions (Pd[DMBil2-PE]) resulting in a significant redshift while also increasing singlet oxygen generation (ΦΔ = 0.59, 600 nm). To further modify the dialkynyl-biladiene scaffold, we conjugated a 1,8-diethynylanthracene with to the Pd[DMBil1] tetrapyrrole in order to further extend the compound’s π-conjugation in a cyclic loop that spans the entire tetrapyrrole unit. This new compound (Pd[DMBil2-P61]) is structurally reminiscent of the P61 Black Widow aircraft and absorbs light into the phototherapeutic window (600–900 nm). In addition to detailing the solid-state structure and steady-state spectroscopic properties for this new biladiene, photochemical sensitization studies demonstrated that Pd[DMBil2-P61] can sensitize the formation of 1O2 with quantum yields of ΦΔ = 0.84 upon irradiation with light λ = 600 nm. These results distinguish the Pd[DMBil2-P61] platform as the most efficient biladiene-based singlet oxygen photosensitizer developed to date. When taken together, the improved absorption in the phototherapeutic window and high singlet oxygen sensitization efficiency of Pd[DMBil2-P61] mark this compound as a promising candidate for future study as an agent of photodynamic cancer therapy.


2022 ◽  
Vol 72 (1) ◽  
pp. 91-97
Author(s):  
Rajeev Kumar Dohare ◽  
Mainuddin . ◽  
Gaurav Singhal

This paper reports development of a real time flow control system for precise, controlled and uniform gas feed to a flowing medium Chemical Oxygen Iodine Laser (COIL). The optimal operation of this prominent laser depends upon the desired supply of gas constituents such as nitrogen (N2), chlorine (Cl2) and iodine (I2) to achieve adequately mixed laser gas. The laser also demands real time variation of flow rates during gas constituent transitions in order to maintain stabilized pressures in critical subsystems. Diluent nitrogen utilized for singlet oxygen transport is termed as primary buffer gas and that for iodine transport is termed as secondary buffer gas (with main and bypass components). Also, nitrogen in precise flows is used for mirror blowing, nozzle curtain, cavity bleed and diffuser startup. A compact hybrid data acquisition system (Hybrid DAS) for precise flow control using LabVIEW 2014 platform has been developed. The supported flow ranges may vary from few mmole.s-1 to few hundred mmole.s-1. The estimated relative uncertainty in the largest gas component i.e. primary buffer gas feed is nearly 0.7%. The implementation of in-operation variation using flow ramp enables swift stabilization of singlet oxygen generator pressures critical for successful COIL operation. The performance of Hybrid DAS is at par with fully wired DAS providing the crucial benefit of remote field operation at distances of nearly 80m in line of sight and 35m with obstacles


2022 ◽  
Author(s):  
Lei Wang ◽  
Lei Tang ◽  
Yingjie Liu ◽  
Hao Wu ◽  
Ziang Liu ◽  
...  

A PSMA targeting ligand is functionalized with endoperoxides which thermally release singlet oxygen. The results show that this modular design results in significantly more cell death in PSMA-expressing prostate cancer cells.


RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 899-906
Author(s):  
F. A. Sewid ◽  
K. I. Annas ◽  
A. Dubavik ◽  
A. V. Veniaminov ◽  
V. G. Maslov ◽  
...  

A CdSe/ZnS QD-TPP nanocomposite and energy transfer from QDs to (i) TPP monomers to oxygen generating singlet oxygen (SO) and (ii) TPP aggregates cannot generate SO in chitosan solution.


2022 ◽  
pp. 118723
Author(s):  
Lixin Zang ◽  
Huibin Wang ◽  
Zongxue Wang ◽  
Shumin Wang ◽  
Miaomiao Yu ◽  
...  

2022 ◽  
Author(s):  
Aleksandra Nyga ◽  
Agata Blacha-Grzechnik ◽  
Przemyslaw Podsiadly ◽  
Alicja Duda ◽  
Kinga Kepska ◽  
...  

Poly(3-hexylthiophene) thin films containing carbon-based nanostructures, i.e. fullerenes such as Buckminsterfullerene (C60) or phenyl-C61-butyric acid methyl ester (PCBM), or single-walled carbon nanotubes, were investigated as heterogeneous photosensitizers producing singlet oxygen...


Author(s):  
Henrique F.V. Victória ◽  
Daniele C. Ferreira ◽  
José B. Gabriel ◽  
Dayse C.S. Martins ◽  
Maurício V.B. Pinheiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document