Numerical simulation of strain rate effect on the inelastic behavior of metal matrix composites

2017 ◽  
Vol 24 (2) ◽  
pp. 279-288
Author(s):  
Qiang Chen ◽  
Zhi Zhai ◽  
Xiaojun Zhu ◽  
Caibin Xu ◽  
Xuefeng Chen

AbstractThe primary goal of this paper is to investigate the combined effects of strain rate and microscopic parameters (fiber off-axis orientation, array pattern and cross-sectional shape) on the mechanical behavior of metal matrix composites (MMCs). To this end, a rate-dependent micromechanical model by the combination of finite-volume theory and Bodner-Partom viscoplastic model is developed to analyze the inelastic response of MMCs. In the simulations, the fibers are modeled as linearly elastic while the metal matrix exhibits viscoplasticity. The macroscopic stress-strain response, local stress and strain fields are obtained simultaneously. An acceptable agreement has been found between the model’s prediction and finite-element results, which demonstrates the good predictive capabilities of the proposed method. It is concluded that the composite response is strongly affected by strain rate, fiber array pattern and cross-sectional shape in the elastic-plastic region but to a lesser extent in the elastic region. Furthermore, the clustering array provides stiffer response than random and square ones; the square fiber predicts stiffer response than circular and elliptical ones. However, increasing the strain rate will weaken the influence of clustering array and square fibers.

2018 ◽  
Vol 941 ◽  
pp. 1645-1650 ◽  
Author(s):  
Takahiro Kunimine ◽  
Ryusei Miyazaki ◽  
Yorihiro Yamashita ◽  
Yoshinori Funada ◽  
Yuji Sato ◽  
...  

This study aims to investigate the microstructure and hardness of multi-layered Stellite-6/WC metal-matrix composites coatings on metallic substrates cladded by laser metal deposition (LMD) for improvement of wear and corrosion resistances. As coating materials, Stellite-6 and WC-12wt.%Co powders were selected. Powder mixtures having various mixing-ratios of Stellite-6 and WC-12wt.%Co were provided vertically on S45C substrates by controlling powder feeding rates of the two powder feeders, individually. Stellite-6/WC composites which consist of three layers with different compositions were cladded on the S45C substrates by laser melting. Cross-sectional microstructure observation was carried out by using an optical microscope (OM). Vickers microhardness tests were conducted to evaluate hardness of the cladding layers and substrates. The experimental results demonstrate that hard multi-layered Stellite-6/WC metal-matrix composites coatings were successfully cladded on the S45C substrates. Property gradients in the Stellite-6/WC composites could be made due to the position-dependent chemical composition and microstructure made by controlling powder feeding rates of an LMD system.


2020 ◽  
Vol 13 (1) ◽  
pp. 103-111
Author(s):  
Roberto Alonso Gonzalez Lezcano ◽  
Eduardo Jose Lopez Fernandez ◽  
Sonia Cesteros Garcia ◽  
Gaston Sanglier Contreras

Sign in / Sign up

Export Citation Format

Share Document